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ABSTRACT

Data-driven machine learning methodologies have attracted considerable attention for the control
and estimation of dynamical systems. However, such implementations suffer from a lack of pre-
dictability and robustness. Thus, adoption of data-driven tools has been minimal for safety-aware
applications despite their impressive empirical results. While classical tools like robust adaptive
control can ensure predictable performance, their consolidation with data-driven methods remains a
challenge and, when attempted, leads to conservative results. The difficulty of consolidation stems
from the inherently different ‘spaces’ that robust control and data-driven methods occupy. Data-
driven methods suffer from the distribution-shift problem, which current robust adaptive controllers
can only tackle if using over-simplified learning models and unverifiable assumptions. In this pa-
per, we present L1 distributionally robust adaptive control (L1-DRAC): a control methodology for
stochastic processes that guarantees robustness certificates in terms of uniform (finite-time) and
maximal distributional deviation. We leverage the L1 adaptive control methodology to ensure the
existence of Wasserstein ambiguity set around a nominal distribution, which is guaranteed to contain
the true distribution. The uniform ambiguity set produces an ambiguity tube of distributions cen-
tered on the nominal temporally-varying nominal distribution. The designed controller generates the
ambiguity tube in response to both epistemic (model uncertainties) and aleatoric (inherent random-
ness and disturbances) uncertainties. We further show how the ‘size’ of the ambiguity tube can be
controlled using certain tuning-knobs that L1-DRAC provides. We demonstrate with a few illustra-
tive examples how L1-DRAC can operate systems while guaranteeing the existence and tunability
of robustness certificates in terms of ambiguity sets/tubes.

Keywords stochastic control, L1-adaptive control, distributionally robust control, controlled
stochastic processes, risk aware control.

1 Introduction

Consider a spectrum of control methodologies with classical tools like robust adaptive control [1, 2] on one end
and data-driven approaches relying on data, computation, and deep-learning on the other end [3, 4, 5, 5, 6]. Robust
adaptive control was born out of a need for certifiable robustness margins and has had a long and rich history of
use with safety-critical applications such as aviation [2]. On the other end, while data-driven methods have displayed
impressive empirical performance and can often learn control policies purely from data (e.g., model-free reinforcement
learning [7]), such methods lack robustness guarantees and safety guarantees [8].
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Ideally, one would like to consolidate the robustness guarantees of the classic methodologies with the empirical per-
formance of the data-driven methodologies. However, such a consolidation is far from a straightforward exercise and,
indeed, is a significant hurdle in the adoption of data-driven controllers/methods for safety-critical systems. In an
attempt to provide safety guarantees for systems operating with data-driven learned components in the loop, recent
attempts have focused on considering a robust worst-case analysis and bounded disturbances, which lead to overly con-
servative results, see e.g. [9, 10, 11] and references therein. Instead, one can study average-case (or high-probability)
stochastic safety guarantees to alleviate the conservativeness since then one analyzes the distributions and their as-
sociated statistical properties instead of purely their supports. Of course, the study of dynamical systems subject to
stochastic perturbations brings forth further challenges in their analysis, and thus, a majority of existing work relies
on relatively simple models that allow for amenable statistical properties like, e.g., linear systems that preserve the
Gaussian nature of perturbations under integration or assumptions that are difficult to verify [12, 13].

In addition to safety guarantees with reduced conservatism, another appealing feature of systems operating under
stochastic perturbations is their representation as time-evolving distributions (measures on probability spaces). For
example, under moderate regularity conditions, the probability density functions associated with the transition proba-
bilities of solutions to certain stochastic differential equations (SDEs) exist and evolve as per the Kolmogorov forward
equation (also known as the Fokker-Planck equation) [14, Chp. 2], [15], [15, Chp. 8]. Of course, along with the
distributional representation of systems with stochastic perturbations, we still retain their representation in terms of
trajectories (sample paths) as in deterministic systems. The distributional representation of stochastic systems is ben-
eficial for using data-driven learned systems and control policies. Rooted in statistical learning theory [16], one can
use concepts from generalization theory like (empirical) risk minimization [17] to train models that achieve low-error
on average over the training data distribution. Therefore, while stochastic systems can be represented distributionally,
data-driven models are trained over distributions, and this commonality can be exploited to consolidate safe and robust
control with the use of data-driven models.

While the distributional nature shared by stochastic systems and data-driven learned models is helpful, one needs
to consider the issues that learned models contend with since these will affect the downstream task of their use in
the control of systems. A central assumption in the learning-based method is that the training and testing datasets
(testing refers to the actual system implementation) are samples from the same distribution [18]. The assumption
of the same training and testing (implementation) data distributions allows one to use generalization theory [17] to
obtain results like the one in [19] where the authors were able to provide the validity of learned stability certificates
to new trajectories initialized from unseen initial conditions, but from the same distribution over initial conditions that
generated the training data. However, as one may expect, the assumption of encountering the same distribution of
scenarios that the learned models are trained on will seldom hold in real-life applications. Thus, a significant issue that
learned systems have to contend with is the distribution shift problem: the real-life scenario wherein a learned model
has to provide predictions and actions in response to an input from a distribution that is different from the distribution
it was trained on [20, 21]. Indeed, distribution shift offers a significant hurdle in using learned models and policies in
safety-critical systems, see [22, 23] and references therein. Distribution shifts can occur, for example, when deploying
a controller learned in a simulator. The controller is learned purely based on the quality (accuracy) of the simulator and
its representational capabilities to offer sufficiently rich and realistic scenarios to the learning agent during training.
The distribution shift problem that a simulator-based learned controller encounters in its deployment on a real system
can be broadly classified under the sim2real transfer problem [24, 25, 26]. Distribution shifts can also occur due to
different distributions of initial conditions and the shift between the control policy that generates the training data
and the optimized learned policy deployed on the system. While far from trivial to address, researchers have made
significant progress in tackling the distribution shifts due to change between data logging and learned policy, as is
common in imitation learning (IL), using robustness properties of systems [27].

Perhaps the most significant source of distribution shift is uncertainties in system dynamics models, also known as
epistemic uncertainties. Note that epistemic uncertainties contribute to the reality gap in the sim2real transfer prob-
lem since their effect manifests as the lack of the simulator in representing reality. Furthermore, if one considers
stochastic systems subject to random perturbations (aleatoric uncertainties), the effects of epistemic uncertainties can
be worsened due to the contribution of the aleatoric uncertainties. Of course, as we mentioned above, classical control
tools like robust adaptive methodologies were explicitly developed to counter the effects of such uncertainties in a
predictable and guaranteed manner. However, the often unrealistic need for explicitly parameterized uncertainties and
bounded and deterministic sets to which uncertainties belong causes one to discard the distributional nature of learned
models to use the classical tools. As we mentioned previously, in doing so, we obtain conservative results and also
lose the distributional representation of learned models and rely solely on bounded and deterministic representations,
which contain far less valuable and actionable information. Therefore, we would like to develop a general control
methodology for uncertain stochastic systems to produce certificates of robustness that are distributional in nature and
thus can facilitate seamless and non-conservative integration with data-driven learned models that can be verified to

2



L1-DRAC: Distributionally Robust Adaptive Control
Global Results

(a) (b)

(c)

Figure 1: Consider the problem of safely navigating an uncertain stochastic system to a goal set (green circle),
avoiding unsafe subsets of the state-space (grey circles). One constructs a control policy for the uncertainty-free
nominal (known) system (the robot with faded colors and a blue outline) as it represents the best knowledge available
for the true (uncertain) system (solid-colored robot). (a) While the control policy successfully guides the nominal
(known) system to the goal set, as we illustrate with temporal state distributions in light blue, applying the same policy
to the true (uncertain) system leads to unquantifiable and undesirable behaviors due to the presence of uncertainties
(illustrated with light-red temporal state-distributions). (b) Thus, one attempts to design an additional feedback policy
to handle uncertainties such that the original policy can still guide the true (uncertain) system predictably and safely.
(c) We provide one such approach, the L1-DRAC control, for the design of robust adaptive feedback such that we
are assured of having the a priori deviations between the nominal (known) system’s state distribution and the true
(uncertain) system’s state distribution. These guarantees are in the form of ambiguity sets (Υt) within which both the
nominal and true state-distributions are guaranteed to lie, ∀t ≥ 0. Due to the uniform (finite-time) guarantees on the
system’s distributional transients, one can extrude such ambiguity tubes in time to obtain ambiguity tubes (∪t∈[0,T ]Υt,
for any T ∈ (0,∞)), which enables safe predictive planning.

produce predictable and, hence, safe behavior. In other words, instead of restricting the capabilities of data-driven
learned models to make them amenable to consolidation with classical control tools, we aim to raise the abstractions
of robust-adaptive control tools so that such tools are conducive to working with learned models by design.

We present L1-distributionally robust adaptive control (L1-DRAC): a robust adaptive methodology to control uncer-
tain stochastic processes whose evolution is governed by stochastic differential equations (SDEs). We design L1-
DRAC such that we can quantify and control the ‘distance’ between the state distributions of the known (nominal)
system and the true (uncertain) system. We use the Wasserstein norm [28, Chp. 6] as a metric on the space of Borel
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measure to quantify the distance between the nominal and true distributions. We use ambiguity sets1 defined via the
Wasserstein distance between the nominal and true state distributions as the robustness certificate against distribution
shifts due to epistemic and aleatoric uncertainties. We develop L1-DRAC using the architecture of L1-adaptive con-
trol [29], a robust adaptive methodology that decouples estimation from control and provides transient guarantees in
response to uncertainties. The L1-adaptive control has been successfully implemented on NASA’s AirStar 5.5% sub-
scale generic transport aircraft model [30], Calspan’s Learjet [31], and uncrewed aerial vehicles [32, 33]. A high-level
illustration of the goals and capabilities of L1-DRAC are illustrated in Fig. 1.

1.1 Prior art

We now discuss the existing results in the literature that provide results for problems similar to the one we consider in
this manuscript.

(i) Uniform (finite-time) guarantees: We begin by discussing results that provide uniform (finite-time) guarantees for
controlled stochastic systems. The authors in [34] and [35] consider asymptotic reference tracking for discrete-time
stochastic systems. However, the safe operation of (stochastic and uncertain) systems requires uniform (finite-time)
guarantees instead of asymptotic guarantees. The closed-loop system’s behavior should remain predictable ∀t ≥ 0,
not just when t → 0. Results on finite-time (uniform) guarantees for stochastic systems in discrete-time can be found
in [36], and for continuous-time in [37] and [38]. Using a different analysis, the authors in [38] were able to provide
bounds on higher-order moments leading to tighter tracking error bounds. Furthermore, the results in [35] and [39]
require linearity of the systems under consideration.

(ii) Control-theoretic approaches: Control Lyapunov function (CLF)-based approaches [40, 41] are the most well-
known and applied methods for controlling perturbed deterministic systems. Such methods thus also led to the devel-
opment of Lyapunov-based approaches for stochastic systems [42, 43, 44, 45] wherein notions like that of globally
asymptotically stable in probability are used [46, Chp. 2], [47, Chp. 5]. Asymptotic stability in probability is a property
of the trivial solution (similar to the deterministic counterpart) and hence applies only to systems whose noise vector
field vanishes at zero [47, Sec. 5.1]. The absence of such constraints prevents the stabilization of the trivial solution
and thus requires robust approaches, e.g., see [42, Sec. 4]. Still, however, being Lyapunov-based approaches, as in the
references mentioned above, one attempts to compute a stochastic Lyapunov function which depends explicitly on the
noise (diffusion) vector field [46, Lem. 2.1], [47, Thm. 5.3]. Such requirements exacerbate the already challenging
problem of synthesizing (control) Lyapunov functions.

An approach that avoids the synthesis of stochastic Lyapunov functions is to consider stochastic systems whose ro-
bust stability can be determined owing to the stability of the deterministic system counterpart (noiseless stochastic
system). For example, the authors in [38] derive the stability of a stochastic system using a Lyapunov function for
the deterministic counterpart system. However, this approach requires synthesizing a CLF for the deterministic sys-
tem, which is still no trivial task for nonlinear systems. As an alternative, contraction theory-based solutions offer
a computationally tractable convex formulation for searching CLFs for nonlinear systems [48]. In fact, contraction
theory offers necessary and sufficient characterization for the stability of trajectories of nonlinear systems [49]. A few
examples of contraction theory-based solutions for control and estimation of nonlinear deterministic systems can be
found in, e.g. [50, 51] and in [52, 37] for stochastic systems. The tutorial paper [53] provides a comprehensive and
exhaustive discussion on using contraction theory to control and estimate nonlinear systems. Using the robustness of
the contraction-based controllers, the authors in [54, 53] prove the robustness of the stochastic counterpart systems.
However, as the authors in [38] observe, the transfer of the stability properties of the deterministic systems to their
stochastic counterparts only holds under certain conditions [15]. This fact holds for the robust controllers in [54, 53],
which apply only to stochastic systems whose noise (diffusion) vector fields are uniformly spatially and temporally
bounded. The authors in [55] developed a learning-based synthesis of contraction theory-based control for nonlinear
stochastic systems; however, similar to [54], the robustness guarantees only hold for systems with bounded noise
(diffusion) vector fields.

In addition to the references provided above, a further few examples of adaptive control for uncertain nonlinear stochas-
tic systems can be found in, e.g. [56] where the authors consider a strict-feedback system with time-delays and utilize
a stochastic Lyapunov function to show global asymptotic stability in probability, and [57], wherein the authors con-
sider output-feedback tracking for a system with linearly parameterized uncertainties and bounded noise (diffusion)
vector field. Using deep-learning methods, the authors in [58] (see also [53, Sec. 8]) provide adaptive control schemes
with robustness guarantees for affine and multiplicatively-separable parametric uncertainties and uniformly bounded
disturbances. The assumption on bounded disturbances precludes the use of continuous-time random processes like

1We shall provide rigorous definitions for ambiguity sets and tubes later in the manuscript; we avoid the rigor here to avoid
overburdening the reader in the introduction section. For the moments, ambiguity sets can be considered simply as a set of
distributions (Borel measures on vector spaces over the field of reals).
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Brownian motion [59], and the assumption on structured parametric uncertainties can also be too restrictive to verify.
Another example of learning-based adaptive control synthesis can be found in [60], where the authors pose the syn-
thesis of adaptive controllers as a meta-learning problem. The authors used model ensembling to counter epistemic
uncertainties and displayed robustness to distribution shifts. However, this was achieved empirically, thus preventing
its use for a priori predictive planning. Furthermore, the distribution shift was shown for distributions with compact
supports. The result in [61] also uses L1-adaptive control, albeit for linear systems with additive Brownian motion.

(iii) Learning-based control: One can find recent results on handling epistemic uncertainties and the associated distri-
bution shift under the umbrella term of learning-based control. For example, the authors in [62] consider discrete-time
deterministic systems and combine density models with Lyapunov functions. Hence, the learned agent remains in, or
close to, the training distribution during implementation (testing). While the work in [62] and ours share the same goal,
the approach taken by the authors is primarily a learning-based data-driven approach where the system is controlled
to remain near the training data distribution, thus avoiding high-uncertainty subsets of the state space. Reachability
analysis for uncertain systems is a popular and effective approach for the safe control of uncertain systems, e.g. [63]
wherein the authors use the Hamilton-Jacobi reachability analysis for systems under unknown but bounded distur-
bances. Similarly, the authors in [64] analyze goal reachability for a class of uncertain stochastic systems under
unknown but bounded stochastic disturbances. As we stated before, using bounded stochastic disturbances disregards
beneficial statistical properties of the disturbances and uncertainties, and hence the state distributions. Thus, one must
then rely solely on considering the supports of the distributions leading to conservative analyses. While the assumption
of bounded disturbances simplifies the analysis relatively since, e.g., as in [64], the system state is differentiable in
time even in the presence of stochastic perturbations, such assumptions exclude the use of models driven by Lévy pro-
cesses like Brownian motion [65]. Reachability analysis of systems perturbed by noise with non-compactly supported
distributions is a challenging prospect as evidenced by recent results in [66, 67, 68] wherein the authors consider linear
systems with additive random disturbances that are possibly correlated, and [69] wherein the authors consider both
linear and nonlinear systems with the vector fields are assumed to be known. The work in [70] considers reachability
analysis for nonlinear stochastic systems in terms of probability measures corresponding to the state distributions.

(iv) Distributionally robust control: Distributionally robust optimization (DRO) is a sub-field of mathematical opti-
mization that considers obtaining extrema of distributionally ambiguous (uncertain) cost functions, see e.g. [71, 72, 73]
and references therein. Therefore, it stands to reason that DRO can assist in achieving the same goals for systems
with distributional uncertainties, similar to how one synthesizes robust controllers against systems with compactly
supported uncertainties (∈ compact sets). Indeed, several recent results use DRO for distributionally robust control
(DRC). The results in [74, 75] consider disturbances with unknown distributions in discrete time; however, the dy-
namics are assumed to be linear with the disturbances affecting the systems additively. Under the same assumptions
of linear dynamics and additive disturbances, the authors in [76] provided a distributionally robust integration of per-
ception, planning, and control. While the authors in [77] consider DRC for nonlinear systems, the noise is assumed
to perturb the system additively. The authors in [78, 79] consider nonlinear systems with disturbances of unknown
distributions also affecting the system in a nonlinear fashion; however, the authors assume the availability of a (finite)
number of samples from the actual disturbance distribution along with the accurate knowledge of the dynamics. The
authors in [80] recently demonstrated the use of DRC for partially observable, albeit linear systems. When samples
from the true distributions are unavailable, assumptions on the existence of an ambiguity set of distributions is assumed
as in [81]. Instead of considering systems with distributionally uncertain disturbances, the DRO formulation can also
be used for the case of uncertain environments, see e.g. [82, 83, 84, 85].

1.2 Contributions

The following describes our contributions regarding the features of the L1-DRAC control compared to existing results
in Sec. 1.1.

(i) The design of L1-DRAC control ensures the existence of a priori computable uniform (finite-time) guarantees
for the closed-loop system in terms of maximal deviation between the distributions (probability measures) of the
true (uncertain) stochastic system and its nominal (known) version. The uniform bounds of distributional deviation are
in the form of Wasserstein metric that define the guaranteed ambiguity sets (and tubes), see Fig. 1(c). Moreover,
suppose the initial distributions have bounded higher moments. In that case, L1-DRAC can ensure the existence of a
priori higher-order Wasserstein ambiguity sets (tubes), thus leading to, e.g., tighter tracking errors. However, unlike
the existing results we mention in Sec. 1.1, we provide finite-time guarantees for uncertain nonlinear stochastic
systems, thus avoiding the assumption of accurate knowledge of the system dynamics or their structure, e.g., linear
dynamics and additive disturbances. Finally, in addition to the ambiguity tube guarantees defined as the union of
time-dependent ambiguity sets, we also show how L1-DRAC provides robust guarantees in the form of a priori
computable ambiguity sets in the space of path measures (distributions defined directly on the system trajectories
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over t ∈ [0, T ], for any T < ∞). In other words, instead of taking union of ambiguity sets over probability measures
on the space of real-valued vectors, we can construct ambiguity tubes as ambiguity sets over probability measures on
the set of continuous functions. We posit that such robust path measures can greatly benefit sampling-based planning
and control as it will allow one to directly sample trajectories instead of sampling from multiple temporal distributions
over the control horizon.

(ii) The L1-DRAC control relies only on the stability of the deterministic counterpart of the known (nominal) subsys-
tem as in [38, 55, 54]. However, when compared to the existing control-theoretic approaches, L1-DRAC is applicable
to nonlinear systems with (globally) unbounded diffusion and drift uncertainties which leads to instability of the
true (uncertain) system despite the stability of the nominal (known) system. The uncertainties are not required
to have any parametric structures and require mild assumptions on their growth but not their global boundedness.
Despite the unbounded and non-parametric uncertainties, L1-DRAC is applicable to systems driven by Brownian mo-
tion. Furthermore, L1-DRAC can also handle noisy control channels wherein an instance of the Brownian motion
acts multiplicatively on the control input (systems subject to control multiplicative noise). Systems with control mul-
tiplicative noise are important for modelling processes that are relevant to biomechanics, neuroscience, autonomous
systems, and finance [86, 87, 88, 89, 90, 91, 92]. In conclusion, we design L1-DRAC for systems with both state and
control multiplicative noise.

(iii) Unlike the existing learning-based approaches, the design of L1-DRAC does not use data-driven learning to
produce guarantees of uniform and maximal distribution shift and instead relies on an adaptive mechanism to com-
pensate for the uncertainties. While the nominal (known) system and a controller to stabilize it might be learned
from data, the distributional robustness that the L1-DRAC controller guarantees does not require learning. Since the
L1-DRAC control ensures uniform guarantees of maximal distribution-shift, we consider L1-DRAC as an approach
where one uses control to enable safe use of data-driven learning, as opposed to using learning to enable safe
control.

A significant benefit of using L1-DRAC control is the ease of ensuring the safety of uncertain nonlinear stochastic
systems when compared to the existing state-of-the-art. For example, L1-DRAC control can provide a computation-
ally inexpensive (optimization-free) approach to compute reachable sets or collision-free plans for safe operation
uncertain nonlinear stochastic systems. Indeed, the a priori existence of ambiguity sets that L1-DRAC control
ensures (see Fig. 1) provides a reachable set of state-distributions (probability measures) for any t ≥ 0. Thus, one
only needs to analyze the reachability of the nominal (known) system, and the ambiguity set guarantees “snap-on” to
guarantee reachability for the true (uncertain) system without any additional computation and optimization.

(iv) The results on distributionally robust control (DRC) we reference above consider accurate dynamics but are per-
turbed by disturbances of unknown distributions, which implies uncertain distributions over states despite the accurate
knowledge of the dynamics. Thus, one may assume the accurate dynamics to correspond to the known (nominal)
version of the true (uncertain) systems. At the same time, the unknown distribution of the disturbance subsumes the
effects of epistemic uncertainties and noise. We instead consider uncertain nonlinear systems driven by Brownian
motion. Even though the distribution of Brownian motion is well-known, e.g., normally distributed and independent
increments [93, 59], the presence of state-dependent uncertainties in both drift and diffusion terms imply the random
perturbations affecting the systems we consider possess unknown distributions, are correlated, appear multi-
plicatively, can affect the control channel, and thus lead to uncertain state distributions. Therefore, while the
DRC results and our work consider different systems regarding knowledge of the dynamics and the distribution of
disturbance/noise, both lead to uncertain state distributions.

Unlike the state-of-the-art for DRC, L1-DRAC does not require a priori existence or knowledge of ambiguity sets
for the true (uncertain) state distributions, nor the a priori availability of (finite) samples from the uncertain
distributions. Indeed, the existence and knowledge of ambiguity sets are not guaranteed for the uncertain systems
we consider. We do not make the unverifiable assumption of a priori availability of samples from the true (uncertain)
state distributions because the L1-DRAC controller uses state-feedback, and hence, it receives exactly one sample
from the time-varying uncertain state distribution at each point in time. Under slightly stronger conditions than
the ones required for well-posedness for nonlinear SDEs, we show 1) the existence of the ambiguity sets (tubes) for
the true (uncertain) distributions, 2) the existence of the a priori computable radius of ambiguity sets over both
temporal and path measures, and 3) a certain amount of control on the radius of the ambiguity sets allowing us to
exercise a degree of control on limiting the distribution shift.
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1.3 Notation

1.3.1 Sets, spaces, and norms

Unless specified otherwise, ∥·∥ denotes the 2-norm on the space Rn, where n ∈ N will be clear from context. Similarly,
∥·∥ denotes the induced operator (Euclidean) norm on the space of linear maps Rn×m, n,m ∈ N. We denote by R>0

and R≥0 the set of positive and non-negative reals, respectively. Furthermore, ∥·∥F denotes the Frobenius norm on
Rn×m. For any A ∈ Rn×n, Tr [A] denotes the trace operator. Note that for any A ∈ Rn×m, ∥A∥F =

√
Tr [AA⊤].

The space of symmetric matrices ∈ Rn×n is denoted by Sn, with Sn
≻0 and Sn

⪰0 denoting the set of positive and
non-negative symmetric matrices, respectively.

Given any set F , we denote by B(F ), the Borel σ-algebra generated by F (assuming there is a topology or a metric
to define open sets in F ). Note that, if F is a normed metric space, the open sets included in the Borel σ-algebra are
defined using the natural norm on F , unless otherwise specified. We denote by B(Rn) as the Borel σ-algebra on Rn.
We say that a map is (Ω,Γ)-measurable if the map between the measurable spaces (Ω,O) and (Γ,G) satisfies the
standard definition of measurability (pre-images of sets ∈ G under the map, belong to O). For any finite dimensional
vector space V over the field of reals, e.g. Rn, the σ-algebra V of subsets of V will be the Borel σ-algebra, i.e.,
V = B(V ).

Given sets F and G, we denote by Cn(F ;G), n ∈ N ∪ {∞}, the set of maps F → G that are n-times continuously
differentiable, and C(F ;G) .

= C0(F ;G). Similarly, we define Cn
0 (F ;G) to be the space of compactly supported

functions, under the assumption that one can define compacts sets ⊆ F . We equip the set C(F ;G), with the norm
∥f∥C = supt∈F ∥f(t)∥G, if G is a normed space with the norm ∥·∥G.

Given any measure space (Λ,G, T ) and the measurable space (Rn,B(Rn)), for any n ∈ N, we define the following
space of equivalence classes of functions Λ → Rn as

Lp (Λ;R
n) =

{
f : Λ → Rn, (Λ,Rn)-measurable : ∥f∥Lp

.
=

(∫
Λ

∥f(λ)∥pdT (λ)
) 1

p

<∞

}
, p ∈ [1,∞), (1a)

L∞ (Λ;Rn) =

{
f : Λ → Rn, (Λ,Rn)-measurable : ∥f∥L∞

.
= ess sup

Λ
∥f∥ <∞

}
, (1b)

where ess sup denotes the essential supremum, and we choose the Euclidean norm inside the integrand, although, any
norm can be used in place due to the equivalence of finite dimensional norms. For the case of functions Rm → Rn,
m,n ∈ N, we set (Λ,G, T ) .= (Rm,B(Rm), µL), where µL is the Lebesgue measure on B(Rm) [94]. Therefore, the
norm for functions in Lp (R

n;Rn), as in (1) is defined using the Lebesgue integral, and similarly for the ess sup for
the case when p = ∞. We denote the set of locally integrable functions, for p ∈ [1,∞], by

Lloc
p (Λ;Rn) = {f : Λ → Rn | f ∈ Lp (V ;Rn) for each open V ⊂⊂ Λ} ,

where V ⊂⊂ Λ denotes that V is compactly contained in Λ, i.e., V ⊂ V̄ ⊂ Λ where the closure V̄ is compact [95,
Sec. A.2]. Given any open U ⊂⊂ Rn whose boundary ∂U is at least continuously differentiable [95, Sec. C.1], and
some N ∋ k > 0, consider a multiindex β = (β1, · · · , βn) of order |β| = β1 + · · · + βn ≤ k. Then, we define the
Sobolev space [95, Ch. 5] Sk,p(U ;Rm) as

Sk,p(U ;Rm) =

f : U → Rm : ∥f∥Sk,p

.
=

∑
|β|≤k

[∥∥Dβf
∥∥
Lp

]p 1
p

<∞

 , (1 ≤ p ≤ ∞),

where, the notation Dβ is defined as[
Dβf(x)

]
j

.
=

∂β1

∂xβ1
· · · ∂

βn

∂xβn
[f(x)]j , |β| ≤ k, j ∈ {1, · · · ,m},

and denotes the weak/generalized derivative [95, Sec. 5.2.1]. Analogous to Lloc
p , we define the space of functions with

locally integrable weak derivatives over any open U ⊆ Rn as

Sk,p
loc (U ;Rm) =

{
f : Ω → Rn | f ∈ Sk,p (V ;Rn) for each V ⊂⊂ Ω

}
.

We denote by L∞ the space of piecewise continuous (in time) and bounded functions f(t) ∈ Rn with
∥f∥L∞

.
= max1≤i≤n {supt>0 |fi(t)|} <∞. Similarly, for any 0 < T <∞, we define the norm

∥f∥[0,T ]
L∞

.
= max1≤i≤n

{
supt∈[0,T ] |fi(t)|

}
< ∞, for all piecewise continuous functions f(t) ∈ Rn without a finite
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escape time. In the same spirit we define the space L1 and L[0,T ]
1 of piecewise continuous integrable functions f(t) ∈

Rn with ∥f∥L1
=
∫∞
0

∥f(s)∥ ds <∞ and ∥f∥[0,T ]
L1

=
∫ T

0
∥f(s)∥ ds <∞, respectively, where any finite-dimensional

norm is admissible in the integrand.

Given two normed linear spaces F and G, we denote the space of all linear and bounded operators F → G by
L(F,G) equipped with the norm ∥·∥L(F,G) induced by the norms on F and G [96, Defn. A.3.9]. We also write
L(F )

.
= L(F, F ).

1.3.2 Probability Theory

Throughout the manuscript, the triple (Ω,F,P) denotes by the underlying complete probability space, where Ω is the
sample space, F is a σ-algebra of subsets of Ω, and P is a probability measure on F. Given any random variable X
(collection of sets S ⊂ F), we denote by σ(X) (σ(S)) the smallest σ-algebra generated by X (S). Given any two σ-
algebras S and R, we denote by S∨R

.
= σ(S∪R) the join of the σ-algebras S and R (the σ-algebra generated by S

and R). The product σ-algebra formed from σ-algebras S and R is denoted by S⊗R
.
= σ (S ×R : S ∈ S, R ∈ R).

Given the probability space (Ω,F,P) and a measurable space (Rn,B(Rn)), we define the spaces Lp(Ω;R
n), p ∈

[1,∞] using (1) with (Λ,G, T ) = (Ω,F,P). Given any f ∈ Lp(Ω;R
n), p ∈ [1,∞), we define the pth-moment of

f as E [∥f∥p] .= ∥f∥pLp
, where E [·] is the expectation operator. Note that unless otherwise specified, the underlying

probability measure is always chosen to be P (the measure for the underlying probability space (Ω,F,P) throughout
the manuscript).

Given any Polish metric space (X , d) (complete and separable metric space [97, Defn. 18.1]), and any two probability
measures π1 and π2, we define the p-Wasserstein metric, p ∈ N, as

WX
p (π1, π2)

.
=

(
inf

γ∈Π(π1,π2)

∫
X
d(x, y)pdγ(x, y)

) 1
p

= inf
γ∈Π(π1,π2)

{
Eγ [d(x, y)

p]
1
p

}
,

where Π(π1, π2) denotes the set of all possible couplings of π1 and π2, see [28, Chp. 6] for further details. Using the
Wasserstein metric, we can define the ambiguity set Ap(µ, ϵ, (X , d)) for any probability measure µ on (X , d) and any
scalar ϵ > 0 as

Ap(µ, ϵ, (X , d))
.
=
{

Probability measure ν on X : WX
p (ν, µ) ≤ ϵ.

}
For any two σ-finite measure spaces (Λi,Gi, Ti), i ∈ {1, 2}, we define the product space as
(Λ1 × Λ2,G1 ×G2, T1 × T2) and where the product measure is defined as T

.
= T1 × T2 such that T (G1 × G2) =

T1(G1)T2(G2). If σ-finite measure spaces are probability spaces, then the product space is a probability space as well
with the product measure as the underlying probability measure [97, Sec. 9.2, Thm. 7].

1.3.3 Stochastic Processes

We assume that the probability space (Ω,F,P) is equipped with a filtration (Ft)t≥0, and we thus denote the underlying
probability space equipped with the filtration by (Ω,F, (Ft)t≥0,P). For statements that hold almost surely with respect
to the probability measure P, we write that the statement holds P-a.s.. For example, we say that an Ft-adapted
stochastic process Xt : Ω → Rn is continuous P-a.s. if it is continuous almost surely under the measure P. See [97,
Chp. 11] for definitions of filtrations and adapted processes.

Given any T ∈ (0,∞) and n ∈ Rn, let B(C([0, T ];Rn)) denote the Borel σ-algebra of open sets in C([0, T ];Rn)
generated by cylinder sets of the form C = {f ∈ C([0, T ];Rn) : f(ti) ∈ Ai, i = 1, . . . , k}, for all k ∈ N, all choice
of times 0 < t1 < · · · < tk ≤ T , and allAi ∈ B(Rn) [59, Chp. 2]. Then, an Ft-adapted and continuous P-a.s. process
Xt : Ω → Rn, we denote by X[0,T ] the law of the process Xt, t ∈ [0, T ], and is the probability measure induced
by X[0,T ]

.
= Xt∈[0,T ], when interpreted as a random variable (Ω,F, (Ft)t≥0,P) → (C([0, T ];Rn),B(C([0, T ];Rn))).

That is, for any A ∈ B(C([0, T ];Rn)), X[0,T ](A) = PX−1
[0,T ](A), the push-forward measure. Similar to X[0,T ], we

denote by Xx
[0,T ], x ∈ Rn, the law of the process Xt∈[0,T ] with X0 = x P-a.s.. Since the laws are defined on cylinder

sets, the law of the process provides us with information like X[0,T ](Xt1 ∈ A1, · · · , Xtk ∈ Ak), for any k ∈ N, any
choice of times 0 < t1 < · · · < tk ≤ T , and any Ai ∈ B(Rn).

Note that at each time t ∈ [0, T ], Xt induces a probability measure on Rn (push-forward measure) which we define
as Xt(A)

.
= PX−1

t (A), for any A ∈ B(Rn). Similarly Xx
t , for when X0 = x P-a.s.. Thus, we refer to Xt as the

temporal measure, while we refer to X[0,T ] as the path measure. This allows us to distinguish our interpretation of
Xt, t ∈ [0, T ], as a random variable between (Ω,F, (Ft)t≥0,P) → (Rn,B(Rn)), or between (Ω,F, (Ft)t≥0,P) →

8



L1-DRAC: Distributionally Robust Adaptive Control
Global Results

(C([0, T ];Rn),B(C([0, T ];Rn))). Thus, we can study properties of the stochastic process either at each point in time,
or over the entire temporal horizon. Furthermore, note that for any t ∈ [0, T ], we have the relation X[0,T ](Xt ∈ A) =
Xt(Xt ∈ A), ∀A ∈ B (Rn) since A ∈ B (Rn) is itself a cylinder set.

Throughout the manuscript, we reserve the notation Wt, and its slight variants, to denote a d-dimensional Brownian
motion, for any d ∈ N, that is Ft-adapted. Since Brownian motion is continuous P-a.s. [59], we use the definitions
above with Xt = Wt and thus define Wt, t ∈ [0, T ], as the temporal measure and W[0,T ] as the path measure (law).
Note that since by definition W0 ≡ 0 ∈ Rm P-a.s. [95], we have Wt

.
= W0

t and W[0,T ]
.
= W0

[0,T ].

For the Ft-adapted and d-dimensional Brownian motion Wt, t ∈ [0, T ], we denote the filtration generated by Wt

by Wt
.
= σ ({Ws : s ≤ t}) and we further define W[0,T ]

.
= σ

(
∪t∈[0,T ]Wt

)
. Additionally, consider an Ft-adapted

and n-dimensional continuous P-a.s. process Xt, t ∈ [0, T ]. We define Xt
.
= σ ({Xs : s ≤ t}) and X[0,T ]

.
=

σ
(
∪t∈[0,T ]Xt

)
. If Xt is Wt-adapted, then Xt ⊆ Wt, and Xx

[0,T ](Xt1 ∈ A1, · · · , Xtk ∈ Ak) = W[0,T ](X
x
t1 ∈

A1, · · · , Xx
tk

∈ Ak), for all k ∈ N, all choice of times 0 < t1 < · · · < tk ≤ T , and all Ai ∈ B(Rn), for any k ∈ N,
any choice of times 0 < t1 < · · · < tk ≤ T , and any Ai ∈ X[0,T ] [15, Chp. 7]. Here, Xx

t denotes the fact that X0 = x
P-a.s.. With a slight abuse of notation, we denote by E [·] to be the expectation w.r.t. to the law W[0,T ] of the Brownian
motionWt =W 0

t , t ∈ [0, T ]. Similarly, we denote by Ex [·] to be the expectation w.r.t. to the law Xx
[0,T ] of the process

Xx
t , t ∈ [0, T ]. Thus, if Xt is Wt-adapted, then Ex [f(Xt)] = E [f(Xx

t )], where f is any sufficiently regular function.

1.3.4 General Notation

We define the diagonal set ∆2n of the vector space R2n, n ∈ N, and the point-to-set distance |·|∆2n
as

∆2n
.
=
{
c ∈ R2n : ∃d ∈ Rn : c =

[
d⊤ d⊤

]⊤}
, |a|∆2n

.
= inf

z∈∆2n

∥a− z∥ .

For any n,m ∈ N, we define 0n and 0n,m to be the vector and matrix of zeros in Rn and Rn×m, respectively. We
define 1n and 1n,m analogously. For any a ∈ R, we define the indicator function 1 : R≥0 → {0, 1} satisfying
1(a)

.
= 0, if a = 0, and 1(a) .

= 1, otherwise. We define 0n : R × {1, · · · , n} → Rn to be a vector-valued map with
all zero entries except for the jth element which takes the value of its first argument.

For any A ∈ Rn×m, we denote by [A]i,j the element at the ith-row and jth column. Similarly, [A]i,· and [A]·,j denote
the ith-row and the jth column of A, respectively. We denote the ith-element of a vector x ∈ Rn as [x]i.

For any continuously differentiable function f : Rn → R, we denote the gradient of f by Rn ∋ ∂af(a)
.
=

[∂xf(x)]x=a =
[
∂f(x)
x1

· · · ∂f(x)
xn

]⊤
x=a

. Note that for f : Rn → Rn, ∂af(a) ∈ Rn×n. We similarly define

the Hessian ∂2ag(a) ∈ Sn for any twice continuously differentiable g : Rn → R.

2 Systems, Assumptions, and Problem Statement

We first begin with the definitions of the processes and stochastic systems we consider.

2.1 The Systems

We begin by defining the known and unknown functions that define the known and unknown drift and diffusion vector
fields, respectively.
Definition 1 (Vector Fields) Consider the known functions f : R≥0 × Rn → Rn, g : R≥0 → Rn×m, and p :
R≥0 × Rn → Rn×d, for n,m, d ∈ N. Consider also the unknown functions Λµ : R≥0 × Rn → Rn and Λσ :
R≥0 ×Rn → Rn×d. For any a ∈ Rn, b ∈ Rm, and t ∈ R≥0, we denote by

Fµ (t, a, b)
.
= f(t, a) + g(t)b+ Λµ (t, a) ∈ Rn, Fσ (t, a)

.
= p(t, a) + Λσ (t, a) ∈ Rn×d, (2)

the true (uncertain) drift and diffusion vector fields, respectively. Similarly, for any a ∈ Rn and t ∈ R≥0, we denote
by

F̄µ (t, a)
.
= f(t, a) ∈ Rn, F̄σ (t, a)

.
= p(t, a) ∈ Rn×d, (3)

the nominal (known) drift and diffusion vector fields, respectively. Note that we have the following decompositions

Fµ (t, a, b) = F̄µ (t, a) + g(t)b+ Λµ (t, a) ∈ Rn, Fσ (t, a) = F̄σ (t, a) + Λσ (t, a) ∈ Rn×d. (4)
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We now use the vector fields in Definition 1 to define the true and nominal processes that we study with respect to
each other in this manuscript.
Definition 2 (Processes) The notations in the following mostly follow the convention in [15]. Let (Ω,F ,P) be a
complete probability space that we consider as the underlying space throughout the manuscript. We denote by Wt

and W ⋆
t any two independent P-Brownian motions. The filtrations generated by Wt and W ⋆

t are denoted by Wt and
W⋆

t , respectively. We also define W∞ = σ (∪t≥Wt) and W⋆
∞ = σ (∪t≥W

⋆
t ). Let x0 ∼ ξ0 and x⋆0 ∼ ξ⋆0 be two Rn-

valued random variables that are independent of the σ-algebras W∞ and W⋆
∞, respectively, where ξ0 and ξ⋆0 are the

respective distributions (probability measures) on the Borel σ-algebra B (Rn). Then, we define W0,t = σ (ξ0) ∨Wt

and W⋆
0,t = σ (ξ⋆0) ∨W⋆

t .

For any T ∈ (0,∞), we say that X,X⋆ ∈ C ([0, T ];Rn) are the true (uncertain) and nominal (known) processes,
respectively, if they are respectively adapted to the filtrations W0,t and W⋆

0,t, and are the unique strong solutions to
the following Itô stochastic differential equations (SDEs), for all t ∈ [0, T ]:

dXt = Fµ (t,Xt, Ut) dt+ Fσ (t,Xt) dWt, X0 = x0 ∼ ξ0 (P-a.s.), (5a)

dX⋆
t = F̄µ (t,X

⋆
t ) dt+ F̄σ (t,X

⋆
t ) dW

⋆
t , X⋆

0 = x⋆0 ∼ ξ⋆0 (P-a.s.), (5b)

where the vector fields F{µ,σ} and F̄{µ,σ}, are presented in Definition 1, and Ut is some yet-to-be-defined process. We
refer to Ut as the feedback process. We will drop the quantifier P-a.s. from here on unless it is not clear from context.

We denote X[0,T ] and X⋆
[0,T ] the true and nominal laws (path/trajectory probability measures) induced respectively

by the process paths X[0,T ] and X⋆
[0,T ] on the σ-algebra B (C ([0, T ];Rn)), i.e., X[0,T ] ∼ X[0,T ] and X⋆

[0,T ] ∼ X⋆
[0,T ].

Remark 2.1 We do not assume the uniqueness and existence of the strong solutions Xt and X⋆
t of (5a) and (5b),

respectively. The well-posedness of (5b) is straightforward to establish under general conditions, see e.g. [59, Defini-
tion 5.2.1], [14, Sec. 4.5], and [15, Sec. 5.2]. However, the well-posedness of (5b) is more challenging prospect. The
primary reason is that the true (uncertain) process Xt depends on the feedback process Ut, and thus we will have to
establish well-posedness once we define Ut.

The separability of the Banach space C ([0, T ];Rn) implies that B (C ([0, T ];Rn)) = σ (C ([0, T ],Rn)) where

C ([0, T ],Rn) ∋ C(k)
.
= {h ∈ C ([0, T ];Rn) | h(t1) ∈ B1, . . . , h(tk) ∈ Bk} , ∀k ∈ N, (6)

for all choice of temporal instances 0 < t1 < . . . < tk ≤ T , and all B1, . . . , Bk ∈ B (Rn) [98,
Sec.2.1, p. 12]. Along with the separability of strong solutions [99, Thm. 5.2.1], the Kolmogorov extension the-
orem [59, Thm. 2.2] implies that the finite-dimensional cylinder sets form a determining class for the probability
measures on B (C ([0, T ];Rn)) [98, Thm 2.0]. Consequently, it suffices to define the laws X[0,T ] and X⋆

[0,T ] on the
cylinder sets as done by the authors in [15] and [14]. Using the laws as probability measures on the finite-dimensional
cylinder sets, we define the distance between the laws X[0,T ] and X⋆

[0,T ] using the Wasserstein metric in the following
definition.
Definition 3 For any C(k) ∈ C ([0, T ],Rn), k ∈ N, as in (6), the action of the laws X[0,T ] and X⋆

[0,T ] on the finite-
dimensional cylinder set C(k) is defined by the respective finite-dimensional distributions Xt1···tk and X⋆

t1···tk as
follows:

X[0,T ] (C(k))
.
= Xt1···tk (B1 × · · · ×Bk) = P [Xt1 ∈ B1, · · · , Xtk ∈ Bk] . (7)

The map X⋆
t1···tk : C(k) → [0, 1] is defined analogously.

For each k ∈ N, the finite-dimensional laws Xt1···tk and X⋆
t1···tk are probability measures on the Polish space Rnk

equipped with the metric induced by the Euclidean norm ∥·∥ on Rkn. Therefore, we define the distance Dp between
the laws X[0,T ] and X⋆

[0,T ] using the Wasserstein metric Wnk
p

(
Xt1···tk ,X

⋆
t1···tk

)
as follows:

Dp

(
X[0,T ],X

⋆
[0,T ]

)
.
= sup

k∈N

Wnk
p

(
Xt1···tk ,X

⋆
t1···tk

)
, 0 < t1 < . . . < tk ≤ T, p ∈ N. (8)

Remark 2.2 The distance Dp

(
X[0,T ],X

⋆
[0,T ]

)
in (8) is the supremum of the set of Wasserstein metrics between all

finite-dimensional distributions Xt1···tk and X⋆
t1···tk corresponding to the laws X[0,T ] and X⋆

[0,T ], respectively. It is
not, however, a metric between the laws themselves since X[0,T ] and X⋆

[0,T ] are probability measures on the infinite-
dimensional space C ([0, T ];Rn). As we have previously discussed, the consistent finite-dimensional distributions can
be extended to measures on C ([0, T ];Rn) using the Kolmogorov extension theorem [98, Thm 2.0]. For example, such
a procedure is used for a construction of the Brownian motion [15, Sec. 2.2]. However, it is not clear to the authors if
a similar extension can be performed for the Wasserstein metric from Rnk to C ([0, T ];Rn) equipped with the metric
induced by the uniform norm. This a topic of future research.
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Remark 2.3 From the perspective of control and planning, the distance Dp

(
X[0,T ],X

⋆
[0,T ]

)
in (8) provides a bound

on the discrepancy between the true and nominal laws X[0,T ] and X⋆
[0,T ] over all finite-dimensional cylinder set which

has appealing operational interpretations. As an example, the distance in (8) can be used to a priori compute the
success probability of an uncertain system tracking a nominal trajectory while navigating an obstacle course. The a
priori quantification of such probabilities can then be used to inform the upstream task of nominal trajectory design
that satisfies the desired (probabilistic) performance guarantees.

2.2 Assumptions

We now state the assumptions we place on the systems we defined in Sec. 2.1 and discuss their verifiability and
consequences. We begin with the assumptions for the nominal (known) system in (5b).
Assumption 1 (Nominal (Known) System) The known functions f(t, a) and p(t, a) in Definition 1 are Lipschitz con-
tinuous, locally in a ∈ Rn and uniformly in t ∈ R≥0, and there exist known ∆f ,∆p ∈ R>0 such that

∥f(t, a)∥2 ≤ ∆2
f

(
1 + ∥a∥2

)
, ∥p(t, a)∥F ≤ ∆p, ∀(t, a) ∈ R≥0 ×Rn.

The input operator g : R≥0 → Rn×m has full column rank, ∀t ∈ R≥0, and satisfies

g ∈ C1([0,∞);Rn×m), ∥g(t)∥F ≤ ∆g, ∥ġ(t)∥F ≤ ∆ġ,∀t ∈ R≥0,

where ∆g,∆ġ ∈ R>0 are assumed to be known.

Additionally, since g(t) is full rank, we can construct a g⊥ : R≥0 → Rn×n−m such that Im g(t)⊥ = ker g(t)⊤

and rank
([
g(t) g(t)⊥

])
= n, ∀t ∈ R≥0. We assume that g⊥(t) ∈ Rn×n−m is uniformly Lipschitz continuous in

t ∈ R≥0, and
∥∥g(t)⊥∥∥

F
≤ ∆⊥

g , ∀t ∈ R≥0, where ∆⊥
g ∈ R>0 is assumed to be known.

Remark 2.4 The condition on local, instead of global Lipschitz continuity expands the class of systems we can con-
sider. However, the local Lipschitz continuity along with the linear growth condition requires an analysis like the
Khasminskii-type theorem [100, Thm. 3.2] to establish the existence and uniqueness of strong solutions. If instead,
one assumes global Lipschitz continuity, then standard results on well-posedness can be used, see e.g., [15, Thm. 5.2.1]
and [100, Thm. 2.31]. We assume the uniform boundedness of the known diffusion p(t, x), instead of linear growth,
since it is a sufficient condition to transfer the stability of the deterministic counterpart of (5b) to the complete stochas-
tic system via robustness arguments, see e.g., [37, 53, 54]. However, as we will see below (see Assumption 4 and the
subsequent comments in Remark 4), we do not place any such assumptions on the diffusion term of the true (uncertain)
system in (5a). Therefore, the stability of (5a) is not guaranteed by the stability of its deterministic counterpart. The
requirement that the initial condition ξ0 ∈ L2p, for some p ∈ N implies that, at the minimum, ξ0 ∈ L2 which is a
standard requirement for SDEs, see e.g. [Thm. 5.2.1][15].

We now place assumptions on the existence of certificates of stability that render the nominal (known) system in (5b),
and its deterministic counterpart (W ⋆

t ≡ 0, ∀t) stable, if well-posed. We will subsequently discuss the notions of
stability that the following assumption endows upon (5b).
Assumption 2 (Nominal (Known) System Stability) Assume there exist known α1, α2, λ ∈ R>0 and a function V ∈
C3(Rn ×Rn;R) such that

α1 ∥a− b∥2 ≤ V (a, b) ≤ α2 ∥a− b∥2 , Va(a, b)
⊤F̄µ (t, a) + Vb(a, b)

⊤F̄µ (t, b) ≤ −2λV (a, b), (9)

for all a, b ∈ Rn and t ∈ R≥0, where F̄µ is defined in (3) and where Va(a, b)
.
= ∂aV (a, b) and Vb(a, b)

.
= ∂bV (a, b).

Furthermore, assume there exist known ∆∂V ,∆∂2V ∈ R>0 such that
n∑

i=1

(
|Vai

(a, b)− Vai
(a′, b′)|2 + |Vbi(a, b)− Vbi(a

′, b′)|2
)
≤ ∆2

∂V

∣∣∣∣[ab
]
−
[
a′

b′

]∣∣∣∣2
∆2n

, (10a)

n∑
i=1

n∑
j=1

(∣∣Vai,aj (a, b)− Vai,aj (a
′, b′)

∣∣2 + ∣∣Vbi,bj (a, b)− Vbi,bj (a
′, b′)

∣∣2 + 2
∣∣Vai,bj (a, b)− Vai,bj (a

′, b′)
∣∣2)

≤ ∆2
∂2V

∣∣∣∣[ab
]
−
[
a′

b′

]∣∣∣∣2
∆2n

, (10b)

for all a, b, a′, b′ ∈ Rn, and where the point-to-set distance |·|∆2n
is defined in Sec. 1.3. We refer to V (·, ·) as an

incremental Lyapunov function (ILF).
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We refer to V (·, ·) as an incremental Lyapunov function (ILF) because it is a certificate for the incremental exponential
stability (IES) of ẋ = F̄µ (t, x) (the deterministic counterpart of the nominal (known) system (5b)), see e.g., [53,
Defn. 2.2], [11, Defin. 3.3], [101, Defn. 1]. While the sufficiency of (9) for the IES of ẋ = F̄µ (t, x) is straightforward,
its necessity holds only over compact subsets of the state space [49]. However, the authors in [101] showed that the
existence of the ILF V satisfying (9), which is sufficient for IES of ẋ = F̄µ (t, x), is equivalent to the existence of
a control contraction metric for the IES system. Thus, the class of ILFs we consider is general enough to represent
certificates for IES of deterministic systems. The use of control contraction metrics (CCMs) [51] directly is a subject
for future investigation.
Remark 2.5 In Lyapunov function-based analysis for stochastic systems, it is common to assume the Lipschitz con-
tinuity of the gradient of the Lyapunov function, see e.g. [38] or [55] for Lipschitz growth on the gradient of the
contraction metric. In a similar vein, the condition in (10a) establishes the Lipschitz continuity of the gradient of ILF
V with respect to the point-to-set distance |·|∆2n

. We choose the point-to-set distance |·|∆2n
since the IES stability of

a deterministic system is equivalent to the exponential stability of its auxiliary version with respect to the diagonal set
∆2n ⊂ R2n [49, 101]. Note that due to [49, Lem. 2.3], (10a) indeed implies Lipschitz continuity with respect to the
standard Euclidean norm. The Lipschitz continuity of the Hessian in (10b) is an additional condition we require. We
highlight the fact that the results in the manuscript hold with |·|∆2n

replaced by the Euclidean norm ∥·∥, albeit with an
amount of additional conservatism.

The next assumption is on the statistical nature of the nominal (known) Itô SDE.
Assumption 3 There exists a known ∆⋆ ∈ R>0, such that, for any T ∈ (0,∞), the strong solution X⋆

t of the nominal
(known) process (5b) satisfies

E

[
sup

t∈[0,T ]

∥X⋆
t ∥

2p⋆

] 1
2p⋆

≤ ∆⋆,

for some p⋆ ∈ N≥1

Remark 2.6 Since we aim to establish the stability of the true (uncertain) process (5a) with respect to the nominal
(known) process (5b), it is a reasonable requirement that the latter satisfies certain properties that represent the desired
behavior that we wish to endow upon the uncertain system.

We conclude the section by stating the assumptions that we place on the true (uncertain) system in (5a).
Assumption 4 (True (Uncertain) System) Consider the unknown functions Λµ and Λσ in Definition 1, and define
Λ∥
µ : R≥0 ×Rn → Rm, Λ⊥

µ : R≥0 ×Rn → Rn−m, Λ∥
σ : R≥0 ×Rn → Rm×d, and Λ⊥

σ : R≥0 ×Rn → Rn−m×d as[
Λ∥
µ (t, a)

Λ⊥
µ (t, a)

]
=
[
g(t) g(t)⊥

]−1
Λµ (t, a) ,

[
Λ∥
σ (t, a)

Λ⊥
σ (t, a)

]
=
[
g(t) g(t)⊥

]−1
Λσ (t, a) , ∀(t, a) ∈ R≥0 ×Rn, (11)

where the input operator g is presented in Definition 1, and g⊥ is defined in Assumption 1.

We assume that Λ∥
µ (t, a), Λ

⊥
µ (t, a), Λ∥

σ (t, a), and Λ⊥
σ (t, a) are Lipschitz continuous, locally in a ∈ Rn and uniformly

in t ∈ R≥0, and there exist known ∆∥
µ, ∆

⊥
µ , ∆

∥
σ, ∆

⊥
σ ∈ R>0 such that∥∥∥Λ{∥,⊥}

µ (t, a)
∥∥∥2 ≤

(
∆{∥,⊥}

µ

)2 (
1 + ∥a∥2

)
,
∥∥∥Λ{∥,⊥}

σ (t, a)
∥∥∥2
F
≤
(
∆{∥,⊥}

σ

)2 (
1 + ∥a∥2

) 1
2

, ∀(t, a) ∈ R≥0 ×Rn.

To avoid burdensome notation, and as an implication of the above, we assume that there exist known ∆µ,∆σ ∈ R>0

such that

∥Λµ (t, a)∥2 ≤ ∆2
µ

(
1 + ∥a∥2

)
, ∥Λσ (t, a)∥2F ≤ ∆2

σ

(
1 + ∥a∥2

) 1
2

, ∀(t, a) ∈ R≥0 ×Rn.

Finally, there exists a known ∆0 ∈ R>0 such that ∥x0∥L2p
≤ ∆0, where x0 is presented in Definition 2, and p ∈ N is

introduced in Assumption 1.

Remark 2.7 The growth bound on drift uncertainty Λµ is the standard general linear growth condition. For diffusion
uncertainty Λσ , our analysis can compensate for uncertainties growing sub-linearly; we do not constrain Λσ to be
uniformly bounded. An implication of this is that the stability of the nominal (known) system in (5b) cannot be
extended to the uncertain (true) system in (5a) via robustness arguments as done in [54, 53]. The L1-DRAC control
can, however, accommodate growing uncertainties under certain conditions as we shall later see.

12



L1-DRAC: Distributionally Robust Adaptive Control
Global Results

Similar to the decomposition of Λµ and Λσ in Assumption 4, we can decompose the known diffusion term p which
we present below.
Assumption 5 For the known diffusion term p in Definition 1, we define p∥ : R≥0 × Rn → Rm×d, and p⊥ :
R≥0 ×Rn → Rn−m×d as [

p∥ (t, a)
p⊥ (t, a)

]
=
[
g(t) g(t)⊥

]−1
p(t, a), ∀(t, a) ∈ R≥0 ×Rn, (12)

where, we assume that p∥ and p⊥ are Lipschitz continuous, locally in a ∈ Rn and uniformly in t ∈ R≥0.

Due to the uniform boundedness of p in Assumption 1, we assume that there exist known ∆∥
p, ∆

⊥
p ∈ R>0 such that∥∥p∥ (t, a)∥∥

F
≤ ∆

∥
p,

∥∥p⊥ (t, a)
∥∥
F
≤ ∆⊥

p , ∀(t, a) ∈ R≥0 ×Rn.

For notational simplicity, and in light of Assumptions 4-5, we define the following:
Definition 4 We define functions F ∥

σ : R≥0 ×Rn → Rm×d and F⊥
σ : R≥0 ×Rn → Rn−m×d as follows:

F
∥
σ (t, a)

.
= p

∥
(t, a) + Λ

∥
σ (t, a) , F⊥

σ (t, a)
.
= p⊥ (t, a) + Λ⊥

σ (t, a) , ∀(t, a) ∈ R≥0 ×Rn.

The final assumption we place is related to the stability of the deterministic counterpart of the true (uncertain) system
in (5a).
Assumption 6 The constants λ and α1 in (9), and the bound ∆∂V in (10a), introduced in Assumption 2 satisfy

λ >
1

α1

(
1

2

) 1
4

∆⊥
g ∆

⊥
µ∆∂V ,

where the bounds ∆⊥
g ∈ R>0 and ∆⊥

µ ∈ R>0 are presented in Assumptions 1 and 4, respectively.

Remark 2.8 The condition in Assumption 6 ensures that the true (uncertain) system in (5a) in the absence of diffusion
terms (Fσ ≡ 0) and the matched drift uncertainty Λ∥

µ ≡ 0, i.e.,deterministic counterpart of the true (uncertain)
system with only the unmatched uncertainty Λ⊥

µ , maintains its incremental exponential stability in the presence of Λ⊥
µ .

The assumption is required since, by definition, the control action cannot “reach” the unmatched uncertainties. This
assumption is similar to Assumption 2 in that it pertains only to the deterministic counterparts of the Itô SDEs that we
consider.

2.3 Problem Statement

We now state the problem we aim to solve in this manuscript.
Problem Statement Consider the closed-loop true (uncertain) Itô SDE, for any T ∈ (0,∞),

dXt = Fµ (t,Xt, UL1,t) dt+ Fσ (t,Xt) dWt, X0 = x0 ∼ ξ0,∀t ∈ [0, T ], (13)

that is induced by closing the feedback loop on the true (uncertain) Itô SDE in (5a) with the feedback process Ut =
UL1,t defined as

UL1,t
.
= FL1 (X) (t) , FL1 : C ([0, T ];Rn) → C ([0, T ];Rm) , ∀t ∈ [0, T ], (14)

where FL1
is the L1-DRAC feedback operator.

We wish to synthesize the L1-DRAC feedback operator FL1 such that the following conditions are satisfied:

Condition 1: The true uncertain process Xt exists and is a unique strong solution of the closed-loop true (uncertain)
Itô SDE in (13), for any T ∈ (0,∞).

Condition 2: There exists an a priori known ρ ∈ R>0 such that

X[0,T ] ∈ Υ
(
X⋆

[0,T ], ρ
)
.
=
{

Probability measures ν on B (C ([0, T ];Rn)) | Dp

(
X⋆

[0,T ], ν
)
≤ ρ
}
, ∀T ∈ (0,∞),

(15)

where XT and X⋆
T are the true and nominal laws of the processes (13) and (5b), respectively, as presented in Defini-

tion 2. We refer to Υ(X⋆
T , ρ) as the uniform ambiguity set of laws on C ([0, T ];Rn).
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Figure 2: The architecture of the L1-DRAC controller. The controller has three components: a process predictor with
output X̂t, an adaptation law driven by the prediction error X̂t − Xt, and a low pass filter that accepts the adaptive
estimate Σ̂t as its input to produce the feedback process Ut.

Condition 3: Furthermore, there exists an a priori known R>0 ∋ ρ̄(T̄ ) < ρ, for any T̄ ∈ (0, T ), such that the true
law X[T̄ ,T ] satisfies

X[T̄ ,T ] ∈ Ῡ
(
X⋆

[T̄ ,T ], ρ̄
)
.
=
{

Probability measures ν on B
(
C
([
T̄ , T

]
;Rn

))
|W2

(
X⋆

[T̄ ,T ], ν
)
≤ ρ̄
}
. (16)

We refer to Ῡ
(
X⋆

[T̄ ,T ]
, ρ̄
)

as the uniformly ultimate ambiguity set of laws on C
([
T̄ , T

]
;Rn

)
.

Recall that the σ-algebra B (C ([0, T ];Rn)) is generated by the cylinder sets of the form in (6). Consequently, evalu-
ating the conditions in (15) and (16) for the cylinder {t, B}, for any (t, B) ∈ [0, T ] × B (Rn), implies the existence
of analogous pointwise in time ambiguity sets on B (Rn). The conclusion is hardly surprising since the uniform
conditions in (15) and (16) imply the pointwise conditions.

3 L1-DRAC Control

In this section we define and analyze the closed loop true (uncertain) system in (13) with the L1-DRAC feedback
control. We begin with the the definition of L1-DRAC feedback operator FL1

that we introduced in (14).

3.1 Architecture and Definition

The design of FL1
is based on the L1-adaptive control methodology [29]. We will design the L1-DRAC feedback

operator FL1
such that the closed-loop true (uncertain) Itô SDE in (13) satisfies the conditions we set forth in Sec. 2.3.

Following the architecture of L1-adaptive control [29], the L1-DRAC feedback operator FL1
consists of a process

predictor, an adaptation law, and a low-pass filter as illustrated in Fig. 2.

We define the L1-DRAC feedback operator FL1 : C([0, T ] : Rn) → C([0, T ] : Rm), as follows:
FL1

(y)
.
= Fω ◦ FTs ◦ Fλs

(y) , y ∈ C([0, T ] : Rn), (17)
where

Fω

(
Λ̂
∥
)
(t)

.
= −ω

∫ t

0

e−ω(t−ν)Λ̂
∥
(ν) dν, (Low-pass filter) (18a)

Λ̂
∥
(t) =F∥

Ts

(
Λ̂
)
(t) =

⌊ t
Ts

⌋∑
i=0

Θad(iTs)Λ̂ (t)1{[iTs,(i+1)Ts)} (t) ,

Λ̂ (t) =FTs (ŷ, y) (t) = 0n1{[0,Ts)} (t)

+ λs
(
1− eλsTs

)−1
⌊ t
Ts

⌋∑
i=1

(
X̂iTs −XiTs

)
1{[iTs,(i+1)Ts)} (t) ,

(Adaptation Law) (18b)
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ŷ(t) =Fλs
(y) (t) ⇒ solution to the integral equation:

ŷ(t) =

∫ t

0

(
−λsIn (ŷ(ν)− y(ν)) + f(ν, y(ν)) + g(ν)FL1

(y) (ν) + Λ̂ (ν)
)
dν,

(Process Predictor) (18c)

for t ∈ [0, T ], where ω,Ts ∈ R>0 are the control parameters and are referred to as the filter bandwidth and the sam-
pling period, respectively. Additionally, Θad(t) = [Im 0m,n−m] ḡ(t)−1 ∈ Rm×n, where ḡ(t) =

[
g(t) g(t)⊥

]
∈

Rn×n, and here g⊥ is defined in Assumption 4.

We perform the analysis to obtain the performance bounds for the L1-DRAC true (uncertain) Itô SDE in (13) in two
steps. First, in Sec. 3.2 we introduce an intermediate and non-realizable process that we call the reference process
and obtain the performance bounds between it and the nominal (known) process. Then, in Sec. 3.3 we analyze the
performance of the L1-DRAC true (uncertain) process relative to the reference process. The last step leads us to the
relative performance bounds between the true (uncertain) process and the nominal (known) process via the triangle
inequality of the Wasserstein metric.

We now present the choice of the control parameters ω ∈ R>0 and Ts ∈ R>0, the bandwidth for the low-pass filter
in (18a) and the sampling period for the adaptation law in (18b), respectively. Suppose that the assumptions in Sec. 2.2
hold. Then, for arbitrarily chosen κri ∈ R>0, i ∈ {1, . . . , 5}, ϵr ∈ R>0, and also κr⊥ , αr ∈ R>0 that are chosen to
satisfy

κr⊥ ∈
(
0, 2α1 −

2

λ
∆r

⊥

)
, αr ∈

(
0, α1 −

1

λ
∆r

⊥ − 1

2
κr⊥

)
, (19)

define

ρr
.
=

1

2αr
∆r

• (κr) +
1

2αr

(
∆r

• (κr)
2
+ 4αr

(
α2W2 (ξ0, ξ

⋆
0)

2
+∆r

◦ (κr) + ϵr

)) 1
2

, (20a)

ρ
.
=, (20b)

where the constants ∆r
◦ and ∆r

• are defined in (??) and constitute of κri ∈ R>0, i ∈ {1, . . . , 5}, and the bounds in
Assumptions 1-5. Furthermore, α2 ∈ R>0 is defined in Assumption 2, and W2 (ξ0, ξ

⋆
0) is the 2-Wasserstein distance

between the initial distributions ξ0 and ξ⋆0 of the true (uncertain) process and the known (nominal) process in (5a)
and (5b), respectively.
Remark 3.1 The existence of a κr⊥ , and thus an αr, that are feasible as per their respective open intervals in (19) is
guaranteed as a consequence of Assumption 6, and the definition of ∆r

⊥ ∈ R>0 in (??).

The filter bandwidth ω ∈ R>0 is chosen such that the following conditions are satisfied:

α1 −
1

λ
∆r

⊥ − κr⊥
2

− αr ≥ Θr
µ3
(ω, κr2) + Θr

σ3
(ω, κr5), (21a)

αrρ
2
r −∆r

• (κr) ρr − α2W2 (ξ0, ξ
⋆
0)

2 −∆r
◦ (κr)

> Θr
µ1
(ω) + Θr

σ1
(ω) +

(
Θr

µ2
(ω, κr1) + Θr

σ2
(ω, κr4)

)
ρr, (21b)

where, the functions Θr
{µi,σi}, i ∈ {1, 2, 3}, are defined in (??)- (??).

Remark 3.2 It is evident by their respective definitions in (??) and (??) that
{
Θr

µ3
(ω, κr2),Θ

r
σ3
(ω, κr5)

}
∈ O

(
1
ω

)
,

for any fixed values of κr2 , κr5 ∈ R>0. Furthermore, the choice of κr⊥ and αr in (19) implies that

α1 −
1

λ
∆r

⊥ − κr⊥
2

− αr > 0.

Hence, one can always choose an ω ∈ R>0 such that the condition in (21a) is satisfied.

Additionally, the definition of ρr in (20a) implies that it is the positive root of the quadratic equation αrρ
2
r −

∆r
• (κr) ρr − α2W2 (ξ0, ξ

⋆
0)

2 − ∆r
◦ (κr) − ϵr = 0. It is trivial to verify the positivity of the discriminant of this

quadratic equation, and that it admits a negative and a positive root, the latter of which is ρr. Since ϵr > 0, the fact
that αrρ

2
r −∆r

• (κr) ρr − α2W2 (ξ0, ξ
⋆
0)

2 −∆r
◦ (κr)− ϵr = 0 leads us to the conclusion that

αrρ
2
r −∆r

• (κr) ρr − α2W2 (ξ0, ξ
⋆
0)

2 −∆r
◦ (κr) > 0.

Therefore, we can always choose an ω ∈ R>0 that, in addition to (21a), also satisfies (21b) since{
Θr

µ1
(ω),Θr

σ1
(ω),Θr

µ2
(ω, κr1),Θ

r
σ2
(ω, κr4)

}
∈ O

(
1√
ω

)
, for any fixed values of κr1 , κr4 ∈ R>0, as evidenced

by their respective definitions in (??) and (??).
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While the choice of κri ∈ R>0, i ∈ {1, . . . , 5}, and ϵr ∈ R>0 is permitted to be arbitrary, any particular choice has
consequences on the tradeoff between the performance of the L1-DRAC true (uncertain) process and the robustness
in terms of aggressiveness of the input UL1,. We discuss such consequences in Sec. 4, along with the fundamental
limitations of the closed loop processes, further considerations regarding the effects of the uncertain vector fields on
the performance, and the interpretation of the performance bounds of L1-DRAC as a generalization of the L1 adaptive
control’s performance for deterministic systems, e.g. in [102, 103].

3.2 Performance Analysis: Reference Process

We begin with the definition of the reference process.

Definition 5 (Reference Process) We say that Xr
t , t ∈ [0, T ], for any T ∈ (0,∞), is the reference process, if Xr

t is a
unique strong solution to the following reference Itô SDE:

dXr
t = Fµ (t,X

r
t , U

r
t ) dt+ Fσ (t,X

r
t ) dWt, Xr

0 = x0 ∼ ξ0, ∀t ∈ [0, T ], (22)

where the initial condition ξ0 ∼ X0 and the driving Brownian motionWt are identical to those for the true (uncertain)
process in (13) (and (5a)). The reference feedback process Ur

t is defined via the reference feedback operator Fr as
follows:

Ur
t = Fr (X

r) (t). Fr (X
r)

.
= Fω

(
Λ
∥
µ (·, Xr)

)
+ FN ,ω

(
F

∥
σ (·, Xr) ,W

)
, t ∈ [0, T ], (23)

where the operator Fω is the low-pass filter defined in (18a), the vector field F ∥
σ is introduced in Definition 4, and

FN ,ω

(
F

∥
σ (·, Xr) ,W

)
(t) = FN ,ω

(
p
∥
(·, Xr) + Λ

∥
σ (·, Xr) ,W

)
(t)

.
= −ω

∫ t

0

e−ω(t−ν)F
∥
σ (ν,Xr

ν ) dWν . (24)

Moreover, the functions Λ∥
µ (t,X

r
t ) ∈ Rm and Λ∥

σ (t,X
r
t ) ∈ Rm×d are defined in Assumption 4, and p∥ (t,Xr

t ) ∈
Rm×d is defined in Assumption 5.

Finally, similar to X[0,T ] and X⋆
[0,T ] in Definition 2, we denote by Xr

[0,T ] the reference law (path/trajectory probability
measures) induced by the process path Xr

[0,T ] on B (C ([0, T ];Rn)), i.e., Xr
[0,T ] ∼ Xr

[0,T ].

Remark 3.3 The reference process is obtained by closing the loop of the true (uncertain) process in (5a) with the
feedback process Ur

t that is composed of the filtered matched drift uncertainty FωΛ
∥
µ (·, Xr)t and the filtered totality

of the matched diffusion vector field FN ,ωp
∥ (·, Xr) + Λ∥

σ (·, Xr) ,Wt expressed as an Itô integral with respect to
the driving true Brownian motion. Thus, the reference process is non-realizable since, by definition, we do not have
knowledge of the epistemic uncertainties Λµ and Λσ , and the aleatoric uncertaintyW. The reference process represents
the best achievable performance since it quantifies, as a function of the low-pass filter bandwidth ω, how the system
operates under the non-realizable assumption of perfect knowledge of the uncertainties.

Remark 3.4 In addition to the epistemic and aleatoric uncertainties Λµ, Λσ , andW, the reference feedback process Ur
t

also includes the known diffusion term p (·, Xr) in its definition. Therefore, the reference feedback process Ur
t further

attempts to remove the effects of the known diffusion term p (t,Xr
t ) from the reference process Xr

t . The reason for
the inclusion of the known diffusion term p is that due to the state-multiplicative nature of the term p (t,Xr

t ) dWt, one
cannot in general disambiguate the effects of the known term p (t,Xr

t ) from the total uncertainty
∫ t

0
Λµ (ν,X

r
ν ) dν +∫ t

0
(p (ν,Xr

ν ) + Λσ (ν,X
r
ν )) dWν . Importantly, the design of the reference feedback process Ur

t with the included
known diffusion term p (t,Xr

t ) leads to the subsequent L1-DRAC feedback operator FL1
with important desirable

implications that we will discuss later.

For the performance analysis of the reference process with respect to the nominal (known) process, we define the
following:

Definition 6 (Joint Known (Nominal)-Reference Process) We say that Yt, t ∈ [0, T ], for any T ∈ (0,∞), is the joint
known(nominal)-reference process, if it is a unique strong solution of the following joint known(nominal)-reference
Itô SDE on

(
Ω,F ,W0,t ×W⋆

0,t,P
)

(see Definition 2 for the filtrations):

dYt = Gµ (t, Yt) dt+Gσ (t, Yt) dŴt, t ∈ [0, T ], Y0 = y0 ∼ ζr0 , Y[0,T ] ∼ Y[0,T ], (25)

where

y0
.
=

[
x0
x⋆0

]
∈ R2n, Yt

.
=

[
Xr

t
X⋆

t

]
∈ R2n, Ŵt

.
=

[
Wt

W ⋆
t

]
∈ R2d, ζr0

.
= π0, Y[0,T ]

.
= π[0,T ],

16



L1-DRAC: Distributionally Robust Adaptive Control
Global Results

Gµ (t, Yt)
.
=

[
Fµ (t,X

r
t , U

r
t )

F̄µ (t,X
⋆
t )

]
∈ R2n, Gσ (t, Yt)

.
=

[
Fσ (t,X

r
t ) 0n,d

0n,d F̄σ (t,X
⋆
t )

]
∈ R2n×2d,

and where π0 and π[0,T ] denote arbitrary couplings [28, Chp. 1] of the initial condition distributions ξ0 and ξ⋆0 on
B
(
R2n

)
and the laws Xr

[0,T ] and X⋆
[0,T ] on B

(
C
(
[0, T ];R2n

))
, respectively.

We do not a priori assume the existence and uniqueness of strong solutions X⋆
t and Xr

t of (5b) and (22), respectively.
Instead, we will establish the well-posedness and the other desired results using the Khasminskii-type theorem [100,
Thm. 3.2]. For this purpose, we will require a truncated version of (25) so that we can build local solutions and extend
them to the global solution using a limiting procedure.
Definition 7 (Truncated Joint Known (Nominal)-Reference Process) We first define

UN
.
=
{
a ∈ R2n : ∥a∥ < N

}
⊂⊂ R2n, ∀N ∈ R>0, (26)

where ⊂⊂ R2n denotes compact containment in R2n [104, Sec. A.2]. Next, we define the truncated joint
known(nominal)-reference Itô SDE as

dYN,t = GN,µ (t, YN,t) dt+GN,σ (t, YN,t) dŴt, YN,0 = Y0, (27)
where, the process and the drift and diffusion vector fields are defined as

YN,t
.
=

[
Xr

N,t

X⋆
N,t

]
, GN,µ (t, a) (GN,σ (t, a)) =

{
Gµ (t, a) (Gσ (t, a)) , ∥a∥ ≤ N

02n (02n,2d) , ∥a∥ ≥ 2N
, ∀(a, t) ∈ R2n × [0, T ],

for any GN,µ (t, a) and GN,σ (t, a) that are uniformly Lipschitz continuous for all a ∈ R2n and t ∈ R≥0. Similar to
Yt, we refer to YN,t ∈ R2n as the truncated joint known(nominal)-reference process if it is a unique strong solution
of (27).

An example of explicit construction of functions of the form GN,{µ,σ} can be found in [93, p. 191].

With the setup complete, we start the analysis of the reference process by first establishing the existence and uniqueness
of strong solutions of the truncated joint process.
Proposition 3.1 (Well-Posedness of (27)) If Assumptions 1 and 4 hold true, then for any N ∈ R>0, YN,t is a unique
strong solution of (27), ∀t ∈ [0, T ], for any T ∈ (0,∞) and is a strong Markov process ∀t ∈ R≥0.

Furthermore, define
τN

.
= T ∧ inf {t ∈ [0, T ] : YN,t /∈ UN} , (28)

where the open and bounded set UN is defined in (26), for an arbitrary N ∈ R>0. Then, YN,t uniquely solves (25), in
the strong sense, for all t ∈ [0, τN ].

Proof. See Appendix C.

Next, we derive bounds on the uniform in time moments between the truncated versions of the reference and known
(nominal) processes.
Lemma 3.1 Let the assumptions in Sec. 2.2 hold. For an arbitrary N ∈ R>0, let the stopping time τN be as in (28)
for the truncated joint process in Definition 7. For any constant t⋆ ∈ R>0 define

τ⋆ = t⋆ ∧ τN , τ(t) = t ∧ τ⋆, (29)

and let π0
⋆
.
= πy0

τ⋆ be the finite-dimensional distribution of the coupling π[0,T ] at the time instant τ⋆ under the condition
YN,0 = y0 P-a.s..

Then, for the truncated joint process YN,t =
(
Xr

N,t, X
⋆
N,t

)
in Definition 7, the following holds:∥∥∥∥∥ sup

t∈[0,τ⋆]

e(2λ+ω)tV (YN,t)

∥∥∥∥∥
π0
⋆

p

≤
∥∥∥eωτ⋆

∥∥∥π0
⋆

p
V (y0) +

∥∥∥eωτ⋆
(
Ξr (·, YN )

)
τ⋆

∥∥∥π0
⋆

p
+
∥∥∥(Ξr

U (·, YN ;ω)
)
τ⋆

∥∥∥π0
⋆

p
, (30)

where ∥·∥π
0
⋆

p denotes the norm on Lp (π
y0

τ⋆) under the probability measure πy0

τ⋆ on B
(
R2n

)
, and V (YN,t) =

V
(
Xr

N,t, X
⋆
N,t

)
is the incremental lyapunov function (ILF) defined in Assumption 2. Furthermore,

Ξr (τ(t), YN ) =

∫ τ(t)

0

e2λν
(
ϕrµ (ν, YN,ν) dν + ϕrσ⋆

(ν, YN,ν) dW
⋆
ν + ϕrσ (ν, YN,ν) dWν

)
,

Ξr
U (τ(t), YN ;ω) =

∫ τ(t)

0

(
Ur
µ (τ(t), ν, YN ;ω) dν + Ur

σ (τ(t), ν, YN ;ω) dWν

)
,

(31)
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where

ϕrµ (ν, YN,ν) = Vr (YN,ν)
⊤
g(ν)⊥Λ⊥

µ

(
ν,Xr

N,t

)
+

1

2
Tr
[
Hσ (ν, YN,ν)∇2V (YN,ν)

]
,

ϕrσ⋆
(ν, YN,ν) = V⋆ (Yν)

⊤
F̄σ (ν,X

⋆
ν ) , ϕrσ (ν, YN,ν) = Vr (Yν)

⊤
g(ν)⊥F⊥

σ

(
ν,Xr

N,ν

)
,

Ur
µ (τ(t), ν, YN ;ω) = ψr(τ(t), ν, YN )Λ

∥
µ

(
ν,Xr

N,ν

)
, Ur

σ (τ(t), ν, YN ;ω) = ψr(τ(t), ν, YN )F
∥
σ

(
ν,Xr

N,ν

)
,

(32)

and

ψr(τ(t), ν, YN ) =
ω

2λ− ω

(
eω(τ(t)+ν)Pr (τ(t), ν)− e(2λτ(t)+ων)Vr

(
YN,τ(t)

)⊤
g(τ(t))

)
+

2λ

2λ− ω
e(ωτ(t)+2λν)Vr (YN,ν)

⊤
g(ν) ∈ R1×m. (33)

In the expressions above, we have defined Vr = ∇Xr
N,t
V ∈ Rn, V⋆ = ∇X⋆

N,t
V ∈ Rn, Hσ = GσG

⊤
σ ∈ S2n, and

Pr (τ(t), ν) =

∫ τ(t)

ν

e(2λ−ω)βdβ

[
Vr (YN,β)

⊤
g(β)

]
∈ R1×m, 0 ≤ ν ≤ τ(t), (34)

where dβ [·] denotes the stochastic differential with respect to β.

Proof. We prove the hypotheses of the lemma only for y0 ∈ UN , since for when y0 /∈ UN , τN = 0, and thus
τ⋆ = τ̄ = 0. Therefore, the bound in (30) is trivially satisfied when y0 /∈ UN , τN = 0. Hence, the proof of (30) for
y0 ∈ UN implies the result for all y0 ∈ R2n.

Since t⋆ is a constant, the fact that τN is a stopping time implies that τ⋆ is a stopping time as well [95, Sec. 6.1]. Addi-
tionally, from Proposition 3.1, we know that YN,t is a unique strong solution of (27), for all t ∈ [0, T ]. Consequently,
the assumptions on the regularity of the vector fields in Sec. 2.2 imply that the vector fieldsGN,µ andGN,σ, that define
the truncated process (27), are uniformly bounded and globally Lipschitz continuous on R2n. It is thus straightforward
to show that YN,t is a strong Markov process by invoking [100, Thm. 2.9.3]. Hence, the process YN,τ(t) obtained by
stopping the process YN,t at the first (random) instant it leaves the set UN or when t = t⋆ is a Markov process and
is well-defined [47, Lem. 3.2]. We may then apply the Itô lemma [100, Thm. 1.6.4] to e2λτ(t)V

(
YN,τ(t)

)
using the

dynamics in (27) to obtain

e2λτ(t)V
(
YN,τ(t)

)
=V (y0) + 2λ

∫ τ(t)

0

e2λνV (YN,ν) dν +

∫ τ(t)

0

e2λν∇V (YN,ν)
⊤
GN,σ (ν, YN,ν) dŴν

+

∫ τ(t)

0

e2λν
(
∇V (YN,ν)

⊤
GN,µ (ν, YN,ν) +

1

2
Tr
[
HN,σ (ν, YN,ν)∇2V (YN,ν)

])
dν,

for all t ∈ R≥0, where HN,σ (ν, YN,ν) = GN,σ (ν, YN,ν)GN,σ (ν, YN,ν)
⊤. Next, from Proposition 3.1, YN,t is also

unique strong solution of (25), for all t ∈ [0, τ⋆] because [0, τ⋆] ⊆ [0, τN ]. Therefore, we may replace GN,µ, GN,σ,
and HN,σ with Gµ, Gσ , and Hσ , respectively, in the above inequality and obtain

e2λτ(t)V
(
YN,τ(t)

)
=V (y0) + 2λ

∫ τ(t)

0

e2λνV (YN,ν) dν +

∫ τ(t)

0

e2λν∇V (YN,ν)
⊤
Gσ (ν, YN,ν) dŴν

+

∫ τ(t)

0

e2λν
(
∇V (YN,ν)

⊤
Gµ (ν, YN,ν) +

1

2
Tr
[
Hσ (ν, YN,ν)∇2V (YN,ν)

])
dν,

for all t ∈ R≥0, whereHσ (ν, YN,ν) = Gσ (ν, YN,ν)Gσ (ν, YN,ν)
⊤. Substituting the expressions in (C.9a) and (C.9b),

Proposition C.1, for the last two terms on the right hand side of the above expression and re-arranging terms leads to

e2λτ(t)V
(
YN,τ(t)

)
≤ V (y0) +

∫ τ(t)

0

e2λν
(
ϕrµ (ν, YN,ν) dν + ϕrσ⋆

(ν, YN,ν) dW
⋆
ν + ϕrσ (ν, YN,ν) dWν

)
+

∫ τ(t)

0

e2λν
([
ϕrU (ν, YN,ν) + ϕrµ∥ (ν, YN,ν)

]
dν + ϕrσ∥ (ν, YN,ν) dWν

)
, ∀t ∈ R≥0, (35)

where

ϕrµ∥ (ν, YN,ν) = Vr (YN,ν)
⊤
g(ν)Λ

∥
µ

(
ν,Xr

N,t

)
, ϕrσ∥ (ν, YN,ν) = Vr (Yν)

⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
,
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ϕrU (ν, YN,ν) = Vr (YN,ν)
⊤
g(ν)Ur

ν .

Next, we use Proposition C.2 to obtain the following expression∫ τ(t)

0

e2λν
([
ϕrU (ν, YN,ν) + ϕrµ∥ (ν, YN,ν)

]
dν + ϕrσ∥ (ν, YN,ν) dWν

)
=

∫ τ(t)

0

e2λν
(
ϕrµ∥ (ν, YN,ν) + ϕrUµ

(ν, YN,ν ;ω)
)
dν +

∫ τ(t)

0

e2λν
(
ϕrσ∥ (ν, YN,ν) + ϕrUσ

(ν, YN,ν ;ω)
)
dWν

+

∫ τ(t)

0

(
Ûr
µ (τ(t), ν, YN ;ω) dν + Ûr

σ (τ(t), ν, YN ;ω) dWν

)
, ∀t ∈ R≥0, (36)

where

Ûr
µ (τ(t), ν, YN ;ω)

= e−ωτ(t) ω

2λ− ω

(
eωτ(t)Pr (τ(t), ν)− e2λτ(t)Vr

(
YN,τ(t)

)⊤
g(τ(t))

)
eωνΛ

∥
µ

(
ν,Xr

N,ν

)
,

Ûr
σ (τ(t), ν, YN ;ω)

= e−ωτ(t) ω

2λ− ω

(
eωτ(t)Pr (τ(t), ν)− e2λτ(t)Vr

(
YN,τ(t)

)⊤
g(τ(t))

)
eωνF

∥
σ

(
ν,Xr

N,ν

)
,

ϕrUµ
(ν, YN,ν ;ω) =

ω

2λ− ω
Vr (YN,ν)

⊤
g(ν)Λ

∥
µ

(
ν,Xr

N,ν

)
,

ϕrUσ
(ν, YN,ν ;ω) =

ω

2λ− ω
Vr (YN,ν)

⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
.

Using the definitions of ϕrµ∥ and ϕrσ∥ in (35), we obtain

ϕrµ∥ (ν, YN,ν) + ϕrUµ
(ν, YN,ν ;ω) =

2λ

2λ− ω
Vr (YN,ν)

⊤
g(ν)Λ

∥
µ

(
ν,Xr

N,ν

)
,

ϕrσ∥ (ν, YN,ν) + ϕrUσ
(ν, YN,ν ;ω) =

2λ

2λ− ω
Vr (YN,ν)

⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
.

Substituting into (36) thus produces∫ τ(t)

0

e2λν
([
ϕrU (ν, YN,ν) + ϕrµ∥ (ν, YN,ν)

]
dν + ϕrσ∥ (ν, YN,ν) dWν

)
= e−ωτ(t)

∫ τ(t)

0

(
Ur
µ (τ(t), ν, YN ;ω) dν + Ur

σ (τ(t), ν, YN ;ω) dWν

)
, ∀t ∈ R≥0,

where Ur
µ and Ur

σ are defined in (32). Substituting the above expression for the last integral on the right hand side
of (35) and using the definitions of Ξr and Ξr

U in (31) yields the following bound:

e2λτ(t)V
(
YN,τ(t)

)
≤ V (y0) + Ξr (τ(t), YN ) + e−ωτ(t)Ξr

U (τ(t), YN ;ω) , ∀t ∈ R≥0,

which in turn produces

e(2λ+ω)τ(t)V
(
YN,τ(t)

)
≤ eωτ(t)V (y0) + eωτ(t)Ξr (τ(t), YN ) + Ξr

U (τ(t), YN ;ω) , ∀t ∈ R≥0, (37)

Taking supremum on both sides over the interval [0, τ⋆] then produces

sup
t∈[0,τ⋆]

[
e(2λ+ω)tV (YN,t)

]
≤ eωτ⋆

V (y0) + eωτ⋆

sup
t∈[0,τ⋆]

|Ξr (t, YN )|+ sup
t∈[0,τ⋆]

|Ξr
U (t, YN ;ω)| . (38)

Then, the bound in (30) is established by invoking the Minkowski’s inequality and thus concluding the proof.

3.3 Performance Analysis: True (Uncertain) Process

We now consider the true (uncertain) system in (5a) operating under the L1-DRAC feedback law FL1
defined in (17),

Sec. 3.1.
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Definition 8 (True (Uncertain) L1-DRAC Closed-loop Process) We say that Xt, t ∈ [0, T ], for any T ∈ (0,∞), is the
true (uncertain) L1-DRAC process, if Xt is a unique strong solution to the true (uncertain) Itô SDE in (5a) under the
L1-DRAC feedback law FL1 in (17):

dXt = Fµ (t,Xt, UL1,t) dt+ Fσ (t,Xt) dWt, X0 = x0 ∼ ξ0 (P-a.s.), (39)
where

UL1,t
.
= FL1 (X) (t) . (40)

The L1-DRAC feedback operator FL1
: C([0, T ] : Rn) → C([0, T ] : Rm), is defined in (17), which we restate next.

Using the definition in (17) that
FL1

(X) = Fω ◦ FTs ◦ Fλs
(X) ,

which we can re-write as

UL1
= Fω

(
Λ̂
∥
)
, Λ̂

∥
= F∥

Ts

(
Λ̂
)
, Λ

∥
= FTs

(
X̂,X

)
, X̂ = Fλs

(X) . (41)

Using (18a), we see that the input UL1,t is defined as the output of the low-pass filter:

UL1,t = Fω

(
Λ̂
∥
)
(t) = −ω

∫ t

0

e−ω(t−ν)Λ̂
∥
(ν) dν, (42)

where ω ∈ R>0 is the filter bandwidth. The adaptive estimates Λ̂∥ and Λ̂ are obtained via the adaptation law operator
FTs

(
F∥

Ts

)
in (18b) as follows:

Λ̂
∥
(t) =F∥

Ts

(
Λ̂
)
(t) =

⌊ t
Ts

⌋∑
i=0

Θad(iTs)Λ̂ (t)1{[iTs,(i+1)Ts)} (t) ,

Λ̂ (t) =FTs

(
X̂t, X

)
(t)

=0n1{[0,Ts)} (t) + λs
(
1− eλsTs

)−1
⌊ t
Ts

⌋∑
i=1

X̃iTs1{[iTs,(i+1)Ts)} (t) , X̃iTs

.
= X̂iTs −XiTs ,

(43)

where Ts ∈ R>0 is the sampling period and Θad(t) = [Im 0m,n−m] ḡ(t)−1 ∈ Rm×n, with ḡ(t) =
[
g(t) g(t)⊥

]
∈

Rn×n for g⊥ defined in Assumption 4. The parameter λs ∈ R>0 contributes to the prediction process X̂t as a
parameter to the operator Fλs

in (18c) which induces the process predictor as follows:

X̂t =Fλs (X) (t) ⇒ X̂t =

∫ t

0

(
−λsInX̃ν + f(ν,Xν) + g(ν)FL1 (X) (ν) + Λ̂ (ν)

)
dν, X̃t

.
= X̂t −Xt. (44)

We collectively refer to {ω,Ts, λs} as the control parameters.

Finally, in Definition 2, X[0,T ] denotes the true law (path/trajectory probability measures) induced by the process
path X[0,T ] on B (C ([0, T ];Rn)), i.e., X[0,T ] ∼ X[0,T ].

Our goal in this section is to establish the performance of the L1-DRAC closed-loop true (uncertain) process in (39)
relative to the reference process in Definition 5. Thus, similar to the joint known(nominal)-reference process in
Definition 6, we define the following:
Definition 9 (Joint True (Uncertain)-Reference Process) Consider the reference process Xr

[0,T ] ∼ Xr
[0,T ] in Defini-

tion 5. We say that Zt, t ∈ [0, T ], for any T ∈ (0,∞), is the joint tue (uncertain)-reference process, if it is a unique
strong solution of the following joint true (uncertain)-reference Itô SDE on (Ω,F ,W0,t,P) (see Definition 2 for the
filtrations):

dZt = Jµ (t, Zt) dt+ Jσ (t, Zt) dWt, t ∈ [0, T ], Z0 = z0 ∼ ζ0, Z[0,T ] ∼ Z[0,T ], (45)
where

z0
.
= 12 ⊗ x0 ∈ R2n, Zt

.
=

[
Xt

Xr
t

]
∈ R2n, ζ0

.
= π̄0, Z[0,T ]

.
= π̄[0,T ],

Jµ (t, Zt)
.
=

[
Fµ (t,Xt, UL1,t)
Fµ (t,X

r
t , U

r
t )

]
∈ R2n, Jσ (t, Zt)

.
=

[
Fσ (t,Xt)
Fσ (t,X

r
t )

]
∈ R2n×d,

where ⊗ denotes the Kronecker product and x0 ∼ ξ0 is the initial condition for the true (uncertain) process in
Definition 2, and restated above in Definition 8. Therefore, π̄0 denotes the trivial self-coupling of the initial condition
measure ξ0 [105]. Moreover, π̄[0,T ] denotes the arbitrary coupling of the the laws X[0,T ] and Xr

[0,T ] (see Definition 5)
on B

(
C
(
[0, T ];R2n

))
, respectively.
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Remark 3.5 The definition of the joint process above between the true (uncertain) process and the reference process
is not a direct analogue to the joint known (nominal)-reference process in Definition 6. The reason is that the true
(uncertain) process and the reference process are driven by the identical Brownian motion Wt and share the same
initial condition x0 ∼ ξ0. This is in contrast to the joint known (nominal)-reference process in Definition 6, where the
known (nominal) process and the reference process are driven by independent Brownian motionsW ⋆

t andWt and have
different initial conditions x0 ∼ ξ0 and x⋆0 ∼ ξ⋆0 , respectively. Recall our discussion in Remark 3.3 that the reference
process is not-realizable and represents the best achievable performance, and thus we designed the reference process
to be driven by the identical Brownian motion and share the same initial condition as the true (uncertain) process.

As in the case of the reference process, we establish the well-posedness of the true (uncertain)-reference process in
Definition 9 using the Khasminskii-type theorem [100, Thm. 3.2]. Therefore, similar to the truncated joint known
(nominal)-reference process in Definition 7, we require the following:
Definition 10 (Truncated Joint True (Uncertain)-Reference Process) Recall the definition of the set UN ⊂⊂ R2n

in (26) which we restate below:

UN
.
=
{
a ∈ R2n : ∥a∥ < N

}
⊂⊂ R2n, ∀N ∈ R>0. (46)

Next, we define the truncated joint true (uncertain)-reference Itô SDE as

dZN,t = JN,µ (t, ZN,t) dt+ JN,σ (t, ZN,t) dWt, ZN,0 = Z0, (47)

where, the process and the drift and diffusion vector fields are defined as

ZN,t
.
=

[
XN,t

Xr
N,t

]
, JN,µ (t, a) (JN,σ (t, a)) =

{
Jµ (t, a) (Jσ (t, a)) , ∥a∥ ≤ N

02n (02n,d) , ∥a∥ ≥ 2N
, ∀(a, t) ∈ R2n × [0, T ],

for any JN,µ (t, a) and JN,σ (t, a) that are uniformly Lipschitz continuous for all a ∈ R2n and t ∈ R≥0. Similar to
Zt, we refer to ZN,t ∈ R2n as the truncated joint known(nominal)-reference process if it is a unique strong solution
of (47).

We begin by establishing the uniqueness and existence of strong solutions for the truncated joint true (uncertain)-
reference process.
Proposition 3.2 (Well-Posedness of (47)) If Assumptions 1 and 4 hold true, then for any N ∈ R>0, ZN,t is a unique
strong solution of (47), ∀t ∈ [0, T ], for any T ∈ (0,∞) and is a strong Markov process ∀t ∈ R≥0.

Furthermore, define
τN

.
= T ∧ inf {t ∈ [0, T ] : ZN,t /∈ UN} , (48)

where the open and bounded set UN is defined in (46), for an arbitrary N ∈ R>0. Then, ZN,t uniquely solves (45), in
the strong sense, for all t ∈ [0, τN ].

Proof. See Appendix D.

Remark 3.6 Recall that τN in (28), Proposition 3.1 denotes the first exit time of the process YN,t from the set UN .
Similarly, with an abuse of notation and from this point onward, τN in (48) denotes the first exit time of the process
ZN,t from the set UN .

Next, we study the uniform in time bounds on the moments of the truncated joint true (uncertain)-reference process.
Lemma 3.2 Let the assumptions in Sec. 2.2 hold. For an arbitrary N ∈ R>0, let the stopping time τN be as in (28)
for the truncated joint process in Definition 7. For any constant t⋆ ∈ R>0 define

τ⋆ = t⋆ ∧ τN , τ(t) = t ∧ τ⋆, (49)

and let π̄0
⋆
.
= π̄z0

τ⋆ be the finite-dimensional distribution of the coupling π̄[0,T ] at the time instant τ⋆ under the condition
ZN,0 = z0 P-a.s..

Then, for the truncated joint process ZN,t =
(
XN,t, X

r
N,t

)
in Definition 10, the following holds:∥∥∥∥∥ sup

t∈[0,τ⋆]

[
e(2λ+ω)τ(t)V

(
ZN,τ(t)

)]∥∥∥∥∥
π̄0
⋆

p

≤
∥∥∥eωτ⋆

∥∥∥π̄0
⋆

p
V (z0) +

∥∥∥eωτ⋆
(
Ξ (·, ZN )

)
τ⋆

∥∥∥π̄0
⋆

p

+
∥∥∥eωτ⋆

(
Ξ̃U (·, ZN )

)
τ⋆

∥∥∥π̄0
⋆

p
+
∥∥∥(ΞU (·, ZN )

)
τ⋆

∥∥∥π̄0
⋆

p
. (50)
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where ∥·∥π̄
0
⋆

p denotes the norm on Lp (π̄
z0
τ⋆) under the probability measure π̄z0

τ⋆ on B
(
R2n

)
, and V (ZN,t) =

V
(
XN,t, X

r
N,t

)
is the incremental lyapunov function (ILF) defined in Assumption 2.

Furthermore,

Ξ (τ(t), ZN ) =

∫ τ(t)

0

e2λν (ϕµ (ν, ZN,ν) + ϕσ (ν, ZN,ν) dWν) ,

Ξ̃U (τ(t), ZN ) =

∫ τ(t)

0

e2λν Ũ (ν, ZN,ν) dν,

ΞU (τ(t), ZN ;ω) =

∫ τ(t)

0

(Uµ (τ(t), ν, ZN ;ω) dν + Uσ (τ(t), ν, ZN ;ω) dWν) ,

(51)

where

ϕµ (ν, ZN,ν) = ∇V (ZN,ν)
⊤ (

I2 ⊗ g(ν)⊥
) (

Λ⊥
µ ⊙ ZN

)
(ν) +

1

2
Tr
[
Kσ (ν, ZN,ν)∇2V (ZN,ν)

]
,

ϕσ (ν, ZN,ν) = ∇V (ZN,ν)
⊤ (

I2 ⊗ g(ν)⊥
) (
F⊥
σ ⊙ ZN

)
(ν),

(52a)

Uµ (τ(t), ν, ZN ;ω) = ψ(τ(t), ν, ZN )
(
Λ
∥
µ ⊙ ZN

)
(ν),

Uσ (τ(t), ν, ZN ;ω) = ψ(τ(t), ν, ZN )
(
F

∥
σ ⊙ ZN

)
(ν),

Ũ (ν, ZN,ν) = V· (ZN,ν)
⊤
g(ν) (FL1 −Fr) (XN ) (ν),

(52b)

and

ψ(τ(t), ν, YN ) =
ω

2λ− ω

(
eω(τ(t)+ν)P (τ(t), ν)− e(2λτ(t)+ων)∇V

(
ZN,τ(t)

)⊤
(I2 ⊗ g(τ(t)))

)
+

2λ

2λ− ω
e(ωτ(t)+2λν)∇V (ZN,ν)

⊤
(I2 ⊗ g(ν)) ,∈ R1×2m. (53)

In the expressions above, we have defined V· = ∇XN,t
V ∈ Rn, Vr = ∇Xr

N,t
V ∈ Rn, Kσ = JσJ

⊤
σ ∈ S2n, and

P (τ(t), ν) =

∫ τ(t)

ν

e(2λ−ω)βdβ

[
∇V (ZN,β)

⊤
(I2 ⊗ g(β))

]
dβ ∈ R1×2m, 0 ≤ ν ≤ τ(t), (54)

where dβ [·] denotes the stochastic differential with respect to β.

Proof. As in the proof of Lemma 3.1, we consider z0 ∈ UN w.l.o.g., and apply the Itô lemma [100, Thm. 1.6.4] to
e2λτ(t)V

(
ZN,τ(t)

)
using the dynamics in (47) to obtain

e2λτ(t)V
(
ZN,τ(t)

)
= V (z0) + 2λ

∫ τ(t)

0

e2λνV (ZN,ν) dν +

∫ τ(t)

0

e2λν∇V (ZN,ν)
⊤
JN,σ (ν, ZN,ν) dWν

+

∫ τ(t)

0

e2λν
(
∇V (ZN,ν)

⊤
JN,µ (ν, ZN,ν) +

1

2
Tr
[
KN,σ (ν, ZN,ν)∇2V (ZN,ν)

])
dν,

for all t ∈ R≥0, where KN,σ (ν, YN,ν) = JN,σ (ν, YN,ν) JN,σ (ν, YN,ν)
⊤. Next, from Proposition 3.2, ZN,t is also

unique strong solution of (45), for all t ∈ [0, τ⋆] because [0, τ⋆] ⊆ [0, τN ]. Therefore, we may replace JN,µ, JN,σ,
and KN,σ with Jµ, Jσ , and Jσ , respectively, in the above inequality and obtain

e2λτ(t)V
(
ZN,τ(t)

)
= V (z0) + 2λ

∫ τ(t)

0

e2λνV (ZN,ν) dν +

∫ τ(t)

0

e2λν∇V (ZN,ν)
⊤
Jσ (ν, ZN,ν) dWν

+

∫ τ(t)

0

e2λν
(
∇V (ZN,ν)

⊤
Jµ (ν, ZN,ν) +

1

2
Tr
[
Kσ (ν, ZN,ν)∇2V (ZN,ν)

])
dν,

for all t ∈ R≥0, where Kσ (ν, ZN,ν) = Jσ (ν, ZN,ν) Jσ (ν, ZN,ν)
⊤. Substituting the expressions in (D.17a)

and (D.17b), Proposition D.1, for the last two terms on the right hand side of the above expression and re-arranging
terms leads to
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e2λτ(t)V
(
ZN,τ(t)

)
≤ V (z0) +

∫ τ(t)

0

e2λν
([
ϕµ (ν, ZN,ν) + Ũ (ν, ZN,ν)

]
dν + ϕσ (ν, ZN,ν) dWν

)
+

∫ τ(t)

0

e2λν
([
ϕU (ν, ZN,ν) + ϕµ∥ (ν, ZN,ν)

]
dν + ϕσ∥ (ν, ZN,ν) dWν

)
, ∀t ∈ R≥0, (55)

where

ϕµ∥ (ν, ZN,ν) = ∇V (ZN,ν)
⊤
(I2 ⊗ g(ν))

(
Λ
∥
µ ⊙ ZN

)
(ν),

ϕσ∥ (ν, ZN,ν) = ∇V (ZN,ν)
⊤
(I2 ⊗ g(ν))

(
F

∥
σ ⊙ ZN

)
(ν),

ϕU (ν, ZN,ν) = ∇V (ZN,ν)
⊤
(I2 ⊗ g(ν)) (Fr ⊙ ZN ) (ν).

Next, we use Proposition D.2 to obtain the following expression∫ τ(t)

0

e2λν
([
ϕU (ν, ZN,ν) + ϕµ∥ (ν, ZN,ν)

]
dν + ϕσ∥ (ν, ZN,ν) dWν

)
=

∫ τ(t)

0

e2λν
(
ϕµ∥ (ν, ZN,ν) + ϕUµ

(ν, ZN,ν ;ω)
)
dν +

∫ τ(t)

0

e2λν (ϕσ∥ (ν, ZN,ν) + ϕUσ
(ν, ZN,ν ;ω)) dWν

+

∫ τ(t)

0

(
Ûµ (τ(t), ν, ZN ;ω) dν + Ûσ (τ(t), ν, ZN ;ω) dWν

)
, ∀t ∈ R≥0, (56)

where

Ûµ (τ(t), ν, ZN ;ω) = e−ωτ(t) ω

2λ− ω

(
eωτ(t)P (τ(t), ν)− e2λτ(t)∇V

(
ZN,τ(t)

)⊤
(I2 ⊗ g(τ(t)))

)
× eων

(
Λ
∥
µ ⊙ ZN

)
(ν),

Ûσ (τ(t), ν, ZN ;ω) = e−ωτ(t) ω

2λ− ω

(
eωτ(t)P (τ(t), ν)− e2λτ(t)∇V

(
ZN,τ(t)

)⊤
(I2 ⊗ g(τ(t)))

)
× eων

(
F

∥
σ ⊙ ZN

)
(ν),

ϕUµ
(ν, ZN,ν ;ω) =

ω

2λ− ω
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
Λ
∥
µ ⊙ ZN

)
(ν),

ϕUσ (ν, ZN,ν ;ω) =
ω

2λ− ω
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
F

∥
σ ⊙ ZN

)
(ν).

Using the definitions of ϕµ∥ and ϕσ∥ in (55), we obtain

ϕµ∥ (ν, ZN,ν) + ϕUµ (ν, ZN,ν ;ω) =
2λ

2λ− ω
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
Λ
∥
µ ⊙ ZN

)
(ν),

ϕσ∥ (ν, ZN,ν) + ϕUσ
(ν, ZN,ν ;ω) =

2λ

2λ− ω
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
F

∥
σ ⊙ ZN

)
(ν).

Substituting into (56) thus produces∫ τ(t)

0

e2λν
([
ϕU (ν, ZN,ν) + ϕµ∥ (ν, ZN,ν)

]
dν + ϕσ∥ (ν, ZN,ν) dWν

)
= e−ωτ(t)

∫ τ(t)

0

(Uµ (τ(t), ν, ZN ;ω) dν + Uσ (τ(t), ν, ZN ;ω) dWν) , ∀t ∈ R≥0,

where Uµ and Uσ are defined in (52). Substituting the above expression for the last integral on the right hand side
of (55) and using the definitions of Ξ, Ξ̃U , and ΞU in (51) yields the following bound:

e2λτ(t)V
(
ZN,τ(t)

)
≤ V (z0) + Ξ (τ(t), ZN ) + Ξ̃U (τ(t), ZN ) + e−ωτ(t)ΞU (τ(t), ZN ;ω) , ∀t ∈ R≥0,

which in turn produces

e(2λ+ω)τ(t)V
(
ZN,τ(t)

)
≤ eωτ(t)V (z0) + eωτ(t)Ξ (τ(t), ZN ) + eωτ(t)Ξ̃U (τ(t), ZN ) + ΞU (τ(t), ZN ;ω) ,
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or all t ∈ R≥0. Taking the supremum on both sides over the interval [0, τ⋆] then produces

sup
t∈[0,τ⋆]

[
e(2λ+ω)τ(t)V

(
ZN,τ(t)

)]
≤eωτ⋆

V (z0)

+ eωτ⋆
(
Ξ (·, ZN )

)
τ⋆

+ eωτ⋆
(
Ξ̃U (·, ZN )

)
τ⋆

+
(
ΞU (·, ZN )

)
τ⋆
.

The proof is then concluded by invoking the Minkowski’s inequality to obtain (50).

4 Discussion

Appendices
A Constants

In this section we collect cumbersome constants we use throughout the manuscript. The subsequent definitions use
the the constants ∆(·) defined in Assumptions 1-5 in Sec. 2.2.

We begin by providing the definitions of constants and maps bespoke to the analysis of the reference process in
Sec. 3.2.

A.1 Reference Process Analysis

We begin with the definition of constants ∆̂r
1, ∆̂r

2, ∆̂r
3, ∆̂r

4, and ∆̂r
4∥ that are used in Proposition C.7, Appendix C:

∆̂r
1 = ∆∂V (2∆f +∆µ) (1 + ∆⋆) + ∆∂2V

(
∆2

p +∆2
σ (1 + ∆⋆)

)
, (A.1a)

∆̂r
2 = 2∆p +∆σ (1 + ∆⋆)

1
2 , (A.1b)

∆̂r
3 =

√
n

2
∆g

(
∆∂V (∆f +∆µ) + ∆∂2V ∆

2
σ

)
+

∆ġ∆∂V√
2

, (A.1c)

∆̂r
4 = ∆p +∆σ (1 + ∆⋆)

1
2 , ∆̂r

4∥ = ∆
∥
p +∆

∥
σ (1 + ∆⋆)

1
2 . (A.1d)

Next, we define the constants ∆r
◦, ∆r

⊚, ∆r
⊙, ∆r

⊗, ∆r
⊛. In addition to the constants ∆(·) defined in Assumptions 1-5 in

Sec. 2.2, the following also use the constants in (A.1) above. We first begin with ∆r
◦i

, i ∈ {1, . . . , 5}, that are defined
as follows:

∆r
◦1

=
∆g∆

⊥
µ

2
(1 + ∆⋆) ∥∇V (0, 0)∥+

√
n∆∂V

4
√
2

(
2∆2

p +∆2
σ (1 + ∆⋆)

)
, (A.2a)

∆r
◦2

= 2
√
p
[
∆⊥

g

(
∆⊥

p +∆⊥
σ (1 + ∆⋆)

1
2

)
+∆p

]
∥∇V (0, 0)∥ , (A.2b)

∆r
◦3

= 2∆g

[(
1 +

√
2λp

)
∆

∥
µ (1 + ∆⋆) +

√
2λp

(
∆

∥
p +∆

∥
σ (1 + ∆⋆)

1
2

)]
∥∇V (0, 0)∥

+
∆∥

µ√
λ
(1 + ∆⋆)

(√
n∆g∆̂

r
1

2
√
2λ

+
∆ġ

2
√
λ
∥∇V (0, 0)∥+

√
2np∆g∆∂V ∆̂

r
2

)

+

√
n

2

p∆2
g∆∂V

λ

(
∆

∥
µ

)2 (
1 + 2∆2

⋆

)
,

(A.2c)

∆r
◦4

= ∆g

(
2m
√

2p ∥∇V (0, 0)∥+
(
2np3(4p− 1)

) 1
2
∆∂V ∆̂

r
2√

λ

)(
∆

∥
p +∆

∥
σ (1 + ∆⋆)

1
2

)
+

(
p3

2p− 1

2

) 1
2 1

2λ

(√
n

2
∆g∆̂

r
1 +∆ġ ∥∇V (0, 0)∥

)(
∆

∥
p +∆

∥
σ (1 + ∆⋆)

1
2

)
,

(A.2d)

∆r
◦5

=

√
n

2

∆g∆∂V

2λ

[√
m∆̂r

4∆̂
r
4∥ + p2(2p− 1)∆g

((
∆

∥
p

)2
+
(
∆

∥
σ

)2
(1 + ∆⋆)

)]
. (A.2e)
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Next, we define the constants ∆r
⊚i

, i ∈ {1, . . . , 4}, as follows:

∆r
⊚1

= 2
√
p∆⊥

g ∆
⊥
σ ∥∇V (0, 0)∥ , (A.3a)

∆r
⊚2

= 2∆g

√
2λp ∥∇V (0, 0)∥∆∥

σ +

√
2np

λ
∆g∆∂V ∆σ∆

∥
µ (1 + ∆⋆) , (A.3b)

∆r
⊚3

=

(
p3

2p− 1

2

) 1
2 ∆∥

σ

2λ

(√
n

2
∆g∆̂

r
1 +∆ġ ∥∇V (0, 0)∥

)
+ 2m

√
2p∆g ∥∇V (0, 0)∥∆∥

σ

+
(
2np3(4p− 1)

) 1
2
∆g∆∂V√

λ

[
∆̂r

2∆
∥
σ +∆σ

(
∆

∥
p +∆

∥
σ (1 + ∆⋆)

1
2

)]
,

(A.3c)

∆r
⊚4

=

√
mn

2

∆g∆∂V

2λ

(
∆σ∆̂

r
4∥ +∆

∥
σ∆̂

r
4

)
. (A.3d)

The constants ∆r
⊙i

, i ∈ {1, . . . , 5}, are defined as:

∆r
⊙1

=
∆g∆

⊥
µ

2
∥∇V (0, 0)∥+

∆g∆∂V ∆
⊥
µ

2
√
2

(1 + ∆⋆) +

√
n∆∂V ∆

2
σ

4
√
2

, (A.4a)

∆r
⊙2

=
√
2p∆∂V

(
∆⊥

g

(
∆⊥

p +∆⊥
σ (1 + ∆⋆)

1
2

)
+∆p

)
, (A.4b)

∆r
⊙3

=
√
2∆g∆

∥
µ

[√
2 ∥∇V (0, 0)∥+∆∂V (1 + ∆⋆)

] (
1 +

√
2λp

)
+

∆∥
µ∆̂

r
3

2λ
(1 + ∆⋆)

+
∆∥

µ√
λ

(√
n∆g∆̂

r
1

2
√
2λ

+
∆ġ

2
√
λ
∥∇V (0, 0)∥+

√
2np∆g∆∂V ∆̂

r
2

)
+2
√
λp∆g∆∂V

(
∆

∥
p +∆

∥
σ (1 + ∆⋆)

1
2

)
,

(A.4c)

∆r
⊙4

=

(
2m

√
p∆g∆∂V +

(
p3

2p− 1

2

) 1
2 ∆̂r

3

2λ

)(
∆

∥
p +∆

∥
σ (1 + ∆⋆)

1
2

)
+
(
2np3(4p− 1)

) 1
2
∆g∆∂V ∆σ∆

∥
σ√

λ
,

(A.4d)

∆r
⊙5

=

√
n

2

∆g∆∂V ∆
∥
σ

2λ

(√
m∆σ + p2(2p− 1)∆g∆

∥
σ

)
, (A.4e)

while the constants ∆r
⊗i

, i ∈ {1, . . . , 3}, are defined as follows:

∆r
⊗1

=
√
2p∆∂V ∆

⊥
g ∆

⊥
σ , (A.5a)

∆r
⊗2

=
√
2p∆g∆∂V

(√
2λ∆

∥
σ +

√
n

λ
∆σ∆

∥
µ

)
, (A.5b)

∆r
⊗3

= ∆
∥
σ

(
2m

√
p∆g∆∂V +

(
p3

2p− 1

2

) 1
2 ∆̂r

3

2λ

)
. (A.5c)

Finally, we define the constants ∆r
⊛i

, i ∈ {1, 2}, as follows:

∆r
⊛1

=
∆g∆∂V ∆

⊥
µ

2
√
2

, (A.6a)

∆r
⊛2

= ∆
∥
µ

[
√
2∆g∆∂V

(
1 +

√
2λp+

√
np∆g∆

∥
µ

λ

)
+

∆̂r
3

2λ

]
. (A.6b)

B Technical Results

We begin with the following result that is a multidimensional version of the stochastic integration by parts formula
in [100, Thm. 1.6.5].
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Lemma B.1 Consider any L ∈ Mloc
2

(
Rl×l′ |Ft

)
and S ∈ Mloc

2

(
Rl′×nq |Ft

)
, for some filtration Ft on (Ω,F ,P).

Then, for any nq-dimensional Ft-adapted Brownian motion Qt, we have that∫ t

0

∫ ν

0

L(ν)S(β)dQβdν =

∫ t

0

∫ t

ν

L(β)S(ν)dβdQν ∈ Rl, (B.1a)∫ t

0

∫ t

ν

L(ν)S(β)dQβdν =

∫ t

0

∫ ν

0

L(β)S(ν)dβdQν ∈ Rl, (B.1b)

for all t ∈ [0, T ].

Proof. We provide a proof for (B.1a) only since (B.1b) can be established mutatis mutandis. We begin by defining

L̂(ς)
.
=

∫ ς

0

L(β)dβ ∈ Rl×l′ , ς ∈ R≥0, (B.2)

As a consequence of the above definition, we have that∫ t

ν

L(β)dβ =

∫ t

0

L(β)dβ −
∫ ν

0

L(β)dβ
.
= L̂(t)− L̂(ν) ∈ Rl×l′ , 0 ≤ ν ≤ t ≤ T. (B.3)

Using the expression above, we may write the right hand side of (B.1a) as∫ t

0

∫ t

ν

L(β)S(ν)dβdQν =

∫ t

0

(∫ t

ν

L(β)dβ

)
S(ν)dQν =

∫ t

0

(
L̂(t)− L̂(ν)

)
S(ν)dQν ∈ Rl,

which can further be re-written as∫ t

0

∫ t

ν

L(β)S(ν)dβdQν

=

∫ t

0

[(
L̂1(t)− L̂1(ν)

)
S(ν)dQν · · ·

(
L̂l(t)− L̂l(ν)

)
S(ν)dQν

]⊤
=

l′∑
i=1

∫ t

0

[(
L̂1,i(t)− L̂1,i(ν)

)
Si(ν)dQν · · ·

(
L̂l,i(t)− L̂l,i(ν)

)
Si(ν)dQν

]⊤
∈ Rl, (B.4)

where L̂1,··· ,l ∈ R1×l′ and S1,··· ,l′ ∈ R1×nq are the rows of L̂(·) ∈ Rl×l′ defined in (B.2) and S(·) ∈ Rl′×nq ,
respectively. Next, we define the following scalar Itô process:

Ŝi(t) =

∫ t

0

Si(ς)dQς , dŜi(t) = Si(t)dQt, t ∈ [0, T ], Ŝi(0) = 0, i ∈ {1, . . . , l′} . (B.5)

Using this definition, we derive the following expression:∫ t

0

(
L̂j,i(t)− L̂j,i(ν)

)
Si(ν)dQν =

∫ t

0

(
L̂j,i(t)− L̂j,i(ν)

)
dŜi(ν)

= L̂j,i(t)

∫ t

0

dŜi(ν)−
∫ t

0

L̂j,i(ν)dŜi(ν)

= L̂j,i(t)Ŝi(t)−
∫ t

0

L̂j,i(ν)dŜi(ν), (B.6)

for (j, i, t) ∈ {1, . . . , l} × {1, . . . , l′} × [0, T ].

It is clear that L̂j,i(t) is Ft-adapted due its definition in (B.2) and the assumed adaptedness of L. Moreover, we may
write L̂j,i(t) = L̂+

j,i(t)− L̂−
j,i(t), where

L̂+
j,i(t)

+(s)
.
=

{
L̂j,i(t) =

∫ t

0
Lj,i(ς)dς, if L̂j,i(t) > 0,

0, otherwise
,

L̂−
j,i(t)

.
=

{
−L̂j,i(t) = −

∫ t

0
Lj,i(ς)dς, if L̂j,i(t) < 0,

0, otherwise
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that is, L̂+
j,i(t) and L̂−

j,i(t) are the positive and negative parts of L̂j,i(t), respectively. Then, since both L̂+
j,i(t) and

L̂−
j,i(t) are increasing processes, we have that L̂j,i(t) is a finite variation process [100, Sec. 1.3]. Therefore we may

use the integration by parts formula [100, Thm. 1.6.5] to obtain∫ t

0

L̂j,i(ν)dŜi(ν) = L̂j,i(t)Ŝi(t)−
∫ t

0

Ŝi(ν)dL̂j,i(ν),

where the last integral is a Lebesgue-Stieltjes integral. Substituting the above equality into (B.6), we obtain∫ t

0

(
L̂j,i(t)− L̂j,i(ν)

)
Si(ν)dQν = L̂j,i(t)Ŝi(t)−

∫ t

0

L̂j,i(ν)dŜi(ν)

=

∫ t

0

Ŝi(ν)dL̂j,i(ν), (j, i, t) ∈ {1, . . . , l} × {1, . . . , l′} × [0, T ]. (B.7)

Then, once again appealing to the decomposition L̂j,i(t) = L̂+
j,i(t) − L̂−

j,i(t), and using the continuity of L and the
definition of L̂ in (B.2), we apply the fundamental theorem for Lebesgue-Stieltjes integrals [106, Thm. 7.7.1] to (B.7)
and obtain∫ t

0

(
L̂j,i(t)− L̂j,i(ν)

)
Si(ν)dQν =

∫ t

0

Ŝi(ν)dL̂j,i(ν)

=

∫ t

0

Ŝi(ν)Lj,i(ν)dν, (j, i, t) ∈ {1, . . . , l} × {1, . . . , l′} × [0, T ].

The proof of (B.1a) is then concluded by substituting the above expression into (B.4) to obtain∫ t

0

∫ t

ν

L(β)S(ν)dβdQν

=

l′∑
i=1

∫ t

0

[(
L̂1,i(t)− L̂1,i(ν)

)
Si(ν)dQν · · ·

(
L̂l,i(t)− L̂l,i(ν)

)
Si(ν)dQν

]⊤
=

l′∑
i=1

∫ t

0

[
Ŝi(ν)L1,i(ν)dν · · · Ŝi(ν)Ll,i(ν)dν

]⊤
(⋆)
=

l′∑
i=1

∫ t

0

∫ ν

0

[L1,i(ν)Si(β)dQβdν · · · Ll,i(ν)Si(β)dQβdν]
⊤
=

∫ t

0

∫ ν

0

L(ν)S(β)dQβdν,

where the equality (⋆) is obtained by invoking the definition of the scalar process Ŝi(t) in (B.5).

The following oft used result is a straightforward consequence of the Burkholder-Davis-Gundy inequality [93,
Chp. 3.5], [107].
Proposition B.1 Consider a complete filtered probability space (Ω,F ,P) with filtration Ft, and any L ∈
Mloc

2 (Rm×nq |Ft), any constant θ ∈ R, and an Ft-adapted Brownian motion Qt ∈ Rnq . Then, the following bound
holds for any constant t′ ∈ [0, T ] and p ≥ 1,∥∥∥(M)

t′

∥∥∥
p
≤ 2m

√
p

(
e2θt

′ − 1

θ

) 1
2 ∥∥∥(L)

t′

∥∥∥
p
, Mt

.
=

∫ t

0

eθνL(ν)dQν ∈ Rm, t ∈ R≥0. (B.8)

Proof. The equivalence of the finite-dimensional norms ∥·∥ .
= ∥·∥2 ≤ ∥·∥1 implies that(

M
)
t′

.
= sup

t∈[0,t′]

∥Mt∥ ≤ sup
t∈[0,t′]

∥Mt∥1 = sup
t∈[0,t′]

m∑
i=1

|Mi,t| ≤
m∑
i=1

sup
t∈[0,t′]

|Mi,t|
.
=

m∑
i=1

(
Mi

)
t′
,

where Mi,t ∈ R is the i-th, i ∈ {1, . . . ,m}, component of Mt ∈ Rm. Applying the Minkowski’s inequality leads to
the following bound: ∥∥∥(M)

t′

∥∥∥
p
≤

m∑
i=1

∥∥∥(Mi

)
t′

∥∥∥
p
. (B.9)
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Next, using the definition of a continuous local martingale [59, Def. 1.5.15], we use the fact that L ∈
Mloc

2 (Rm×nq |Ft) and invoke [108, Thm. 5.5.2] to conclude that Mi,t is a continuous local martingale with respect
to the filtration Ft and satisfies Mi,0 = 0, for all i ∈ {1, . . . ,m}. Furthermore, since t′ ∈ R>0 is constant it is a
stopping time with respect to the filtration Ft [95, Sec. 6.1.1]. Thus, we may invoke the Burkholder-Davis-Gundy
inequality [107, Thm. 2] to obtain the following bound:∥∥∥(Mi

)
t′

∥∥∥
p
≤
√
8p

∥∥∥∥〈Mi

〉 1
2

t′

∥∥∥∥
p

, ∀i ∈ {1, . . . ,m} , (B.10)

where
〈
Mi

〉
t′

is the quadratic variation process of of Mi,t evaluated at t′ [59, Prop. 3.2.10].

We next bound the quadratic variation process as follows:〈
Mi

〉
t′
=

∫ t′

0

e2θν
∥∥Li(ν)

⊤∥∥2 dν ≤
∫ t′

0

e2θνdν
(
L⊤
i

)2
t′
=
e2θt

′ − 1

2θ

(
L⊤
i

)2
t′
, ∀i ∈ {1, . . . ,m} ,

where Li(ν) ∈ R1×nq denotes the i-th row of L(ν) ∈ Rm×nq . Substituting into (B.10) and using the fact that t′ is a
constant produces

∥∥∥(Mi

)
t′

∥∥∥
p
≤
√
8p

∥∥∥∥〈Mi

〉 1
2

t′

∥∥∥∥
p

≤

(
4p
e2θt

′ − 1

θ

) 1
2 ∥∥∥(L⊤

i

)
t′

∥∥∥
p
, ∀i ∈ {1, . . . ,m} ,

which upon further substitution into (B.9) produces the following bound:

∥∥∥(M)
t′

∥∥∥
p
≤

m∑
i=1

∥∥∥(Mi

)
t′

∥∥∥
p
≤

(
4p
e2θt

′ − 1

θ

) 1
2 m∑

i=1

∥∥∥(L⊤
i

)
t′

∥∥∥
p
. (B.11)

Now, consider L⃗ =

[∥∥∥(L⊤
1

)
t′

∥∥∥
p

· · ·
∥∥∥(L⊤

m

)
t′

∥∥∥
p

]⊤
∈ Rm. Then, using the equivalence of the finite-dimensional

norms ∥·∥1 ≤
√
m ∥·∥2

.
= ∥·∥ and the definition of the Frobenius norm, we obtain

We may bound the term
∥∥Li(t)

⊤
∥∥ using the definition of the Frobenius norm as follows:

∥∥Li(t)
⊤∥∥2 ≤

m∑
i=1

∥∥Li(t)
⊤∥∥2 = ∥L(t)∥2F , ∀i ∈ {1, . . . ,m} ,

and thus (
L⊤
i

)
t′
= sup

t∈[0,t′]

∥∥Li(t)
⊤∥∥ ≤ sup

t∈[0,t′]

∥L(t)∥F =
(
L
)
t′
, ∀i ∈ {1, . . . ,m} .

The bound in(B.8) is then established by substituting the above bound into the right hand side of (B.11).

The next result provides a moment bound for the process Mt defined in Proposition B.1.

Lemma B.2 Let p ∈ N≥1, and suppose that L ∈ Mloc
2 (Rm×nq |Ft) defined in Proposition B.1 satisfies

E

[∫ T

0

∥L(ν)∥2pF dν

]
<∞.

Then, we have the following bound on the moments of the process Mt defined in Proposition B.1:

E

[∥∥∥∥∫ t

0

eθνL(ν)dQν

∥∥∥∥2p
]
≤
(
p
2p− 1

2

)p(
e2θt − 1

θ

)p

E

[(
L
)2p
t

]
, ∀t ∈ [0, T ], p ≥ 1, (B.12)

where θ ∈ R is a constant and Qt ∈ Rnq is an Ft-adapted Brownian motion as in the statement of Proposition B.1.
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Proof. We begin with the case when p = 1, and use [100, Thm. 1.5.21] to obtain

E

[∥∥∥∥∫ t

0

eθνL(ν)dQν

∥∥∥∥2
]
= E

[∫ t

0

e2θν ∥L(ν)∥2F dν
]
.

Therefore,

E

[∥∥∥∥∫ t

0

eθνL(ν)dQν

∥∥∥∥2
]
≤ E

[∫ t

0

e2θνdν
(
L
)2
t

]
= E

[(
e2θt − 1

) 1

2θ

(
L
)2
t

]
,

thus establishing (B.12) for p = 1.

Now, let p ∈ N≥2, and for t ∈ [0, T ], set

N(t) =

∫ t

0

eθνL(ν)dQν ∈ Rm.

Then, as in the proof of [100, Thm. 1.7.1], we use Itô’s lemma and [100, Thm. 1.5.21] to obtain

E
[
∥N(t)∥2p

]
= pE

[∫ t

0

(
∥N(ν)∥2(p−1)

e2θν ∥L(ν)∥2F + 2(p− 1) ∥N(ν)∥2(p−2)
e2θν

∥∥N(ν)⊤L(ν)
∥∥2) dν] . (B.13)

Thus, we obtain the following bound

E
[
∥N(t)∥2p

]
≤p(2p− 1)E

[∫ t

0

∥N(ν)∥2(p−1)
e2θν ∥L(ν)∥2F dν

]
=p(2p− 1)E

[∫ t

0

e2θν(p−1)/p ∥N(ν)∥2(p−1)
e2θν/p ∥L(ν)∥2F dν

]
,

where, in order to obtain the last equality, we have used e2θν = e2θν[(p−1)/p+1/p] = e2θν(p−1)/pe2θν/p. Using Hölder’s
inequality with conjugates p/(p− 1) and p, one sees that

E
[
∥N(t)∥2p

]
≤ p(2p− 1)E

[∫ t

0

e2θν ∥N(ν)∥2p dν
] p−1

p

E

[∫ t

0

e2θν ∥L(ν)∥2pF dν

] 1
p

= p(2p− 1)

(∫ t

0

e2θνE
[
∥N(ν)∥2p

]
dν

) p−1
p

E

[∫ t

0

e2θν ∥L(ν)∥2pF dν

] 1
p

.

Note from (B.13) that E
[
∥N(t)∥2p

]
is non-decreasing in t. It then follows that

E
[
∥N(t)∥2p

]
≤p(2p− 1)

(∫ t

0

e2θνdν

) p−1
p

E
[
∥N(t)∥2p

] p−1
p

E

[∫ t

0

e2θν ∥L(ν)∥2pF dν

] 1
p

≤p(2p− 1)

(∫ t

0

e2θνdν

) p−1
p

E
[
∥N(t)∥2p

] p−1
p

E

[∫ t

0

e2θνdν
(
L
)2p
t

] 1
p

=p(2p− 1)

(∫ t

0

e2θνdν

) p−1
p

E
[
∥N(t)∥2p

] p−1
p

(∫ t

0

e2θνdν

) 1
p

E

[(
L
)2p
t

] 1
p

=p(2p− 1)E
[
∥N(t)∥2p

] p−1
p

(∫ t

0

e2θνdν

)
E

[(
L
)2p
t

] 1
p

,

and thus

E
[
∥N(t)∥2p

]p
≤ (p(2p− 1))

p
E
[
∥N(ν)∥2p

]p−1
(∫ t

0

e2θνdν

)p

E

[(
L
)2p
t

]
.

The above inequality implies

E
[
∥N(t)∥2p

]
≤ (p(2p− 1))

p

(∫ t

0

e2θνdν

)p

E

[(
L
)2p
t

]
=
(
e2θt − 1

)p(p(2p− 1)

2θ

)p

E

[(
L
)2p
t

]
,

thus completing the proof.
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Next, we provide a bound on a particular Lebesgue integral with an Itô integral in the integrand.
Lemma B.3 Consider a complete filtered probability space (Ω,F ,P) with filtration Ft, and let S ∈ Mloc

2 (Rm|Ft)
and L ∈ Mloc

2 (Rm×nq |Ft) satisfy

E

[∫ T

0

(
∥S(ν)∥2p + ∥L(ν)∥2pF

)
dν

]
<∞, ∀p ≥ 1.

Additionally, for any strictly positive constants θ1, θ2 ∈ R>0 and an Ft-adapted Brownian motion Qt ∈ Rnq define

N(t) =

∫ t

0

e(θ1−θ2)νS(ν)⊤
(∫ ν

0

eθ2βL(β)dQβ

)
dν ∈ R, t ∈ [0, T ]. (B.14)

Then, the following bound holds for any constant t′ ∈ [0, T ]:∥∥∥(N)
t′

∥∥∥
p
≤
(
p3

2p− 1

2

) 1
2 eθ1t

′

θ1
√
θ2

∥∥∥(L)
t′

∥∥∥
2p

∥∥∥(S)
t′

∥∥∥
2p
, ∀p ∈ N≥1. (B.15)

Proof. We begin with the case when p = 1. Note that the definition of N(t) implies that

|N(t)| ≤
∫ t

0

e(θ1−θ2)ν ∥S(ν)∥
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν, t ∈ [0, T ].

It then follows from the non-negativity of the integrand of the Lebesgue integral that for all t ∈ [0, t′]

|N(t)| ≤
∫ t′

0

e(θ1−θ2)ν ∥S(ν)∥
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν, ∀t ∈ [0, t′],

which in turn implies that

sup
t∈[0,t′]

|N(t)| .=
(
N
)
t′
≤
∫ t′

0

e(θ1−θ2)ν ∥S(ν)∥
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν.
Hence

E
[(
N
)
t′

]
≤ E

[∫ t′

0

e(θ1−θ2)ν ∥S(ν)∥
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν
]

=

∫ t′

0

e(θ1−θ2)νE

[
∥S(ν)∥

∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥] dν.
Using the Cauchy-Schwarz inequality one then sees that

E
[(
N
)
t′

]
≤
∫ t′

0

e(θ1−θ2)νE
[
∥S(ν)∥2

] 1
2

E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2
] 1

2

dν

≤

∫ t′

0

e(θ1−θ2)νE

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2
] 1

2

dν

E

[(
S
)2
t′

] 1
2

.

Using Lemma B.2 on the inner expectation produces

E
[(
N
)
t′

]
≤

(∫ t′

0

e(θ1−θ2)ν
(
e2θ2ν − 1

) 1
2

(
1

2θ2

) 1
2

E

[(
L
)2
ν

] 1
2

dν

)
E

[(
S
)2
t′

] 1
2

≤

(∫ t′

0

e(θ1−θ2)ν
(
e2θ2ν − 1

) 1
2 dν

)(
1

2θ2

) 1
2

E

[(
L
)2
t′

] 1
2

E

[(
S
)2
t′

] 1
2

,

where the last inequality follows from the fact that [0, ν] ⊆ [0, t′] and thus supβ∈[0,ν] ∥L(β)∥F ≤ supβ∈[0,t′] ∥L(β)∥F .
The bound in (B.15) is then established for p = 1 by solving the integral term as follows:∫ t′

0

e(θ1−θ2)ν
(
e2θ2ν − 1

) 1
2 dν =

∫ t′

0

eθ1ν
(
e−2θ2ν

) 1
2
(
e2θ2ν − 1

) 1
2 dν =

∫ t′

0

eθ1ν
(
1− e−2θ2ν

) 1
2 dν,
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which, upon using the strict positivity of θ1 and θ2, yields∫ t′

0

e(θ1−θ2)ν
(
e2θ2ν − 1

) 1
2 dν =

∫ t′

0

eθ1ν
(
1− e−2θ2ν

) 1
2 dν ≤

∫ t′

0

eθ1νdν =
(
eθ1t

′
− 1
) 1

θ1
≤ eθ1t

′ 1

θ1
.

Now, let p ∈ N≥2. Since the outer integral in the definition ofN(t) is a standard Lebesgue integral with a t-continuous
integrand, the fundamental theorem for the Lebesgue integral [106, Thm. 6.4.1] implies that N(t) is absolutely con-
tinuous on [0, T ] and

dN(t) = e(θ1−θ2)tS(t)⊤
(∫ t

0

eθ2βL(β)dQβ

)
dt, µL-a.e. on [0, T ],

where µL denotes the Lebesgue measure. Using the chain rule one then sees that

|N(t)|p = p

∫ t

0

|N(ν)|p−2
N(ν)e(θ1−θ2)νS(ν)⊤

(∫ ν

0

eθ2βL(β)dQβ

)
dν

≤ p

∫ t

0

|N(ν)|p−1
e(θ1−θ2)ν ∥S(ν)∥

∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν, t ∈ [0, T ].

Since the right hand side is a non-decreasing function over t ∈ [0, t′], it follows then

|N(t)|p ≤ p

∫ t′

0

|N(ν)|p−1
e(θ1−θ2)ν ∥S(ν)∥

∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν, t ∈ [0, t′],

and thus (
N
)p
t′
≤ p

∫ t′

0

|N(ν)|p−1
e(θ1−θ2)ν ∥S(ν)∥

∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν.
Using the above bound we obtain the following inequality:

E
[(
N
)p
t′

]
≤pE

[∫ t′

0

|N(ν)|p−1
e(θ1−θ2)ν ∥S(ν)∥

∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥ dν
]

(i)
=pE

[∫ t′

0

(
|N(ν)|p−1

eθ1(p−1)ν/p
)(

e(θ1/p−θ2)ν ∥S(ν)∥
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥) dν
]

(ii)

≤ pE

[∫ t′

0

|N(ν)|p eθ1νdν

] p−1
p

E

[∫ t′

0

e(θ1−θ2p)ν ∥S(ν)∥p
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥p dν
] 1

p

, (B.16)

where we obtain (i) by writing

e(θ1−θ2)ν = e[θ1(
p−1
p + 1

p )−θ2]ν = eθ1(p−1)ν/pe(θ1/p−θ2)ν ,

and (ii) follows from Hölder’s inequality with conjugates p/(p− 1) and p.

Now, we have the following straightforward inequality:

E

[∫ t′

0

|N(ν)|p eθ1νdν

]
≤E

[(∫ t′

0

eθ1νdν

)(
N
)p
t′

]
=

(∫ t′

0

eθ1νdν

)
E
[(
N
)p
t′

]
, (B.17)

where we have used the fact that t′ is a constant.

Next, using the Cauchy-Schwarz inequality one sees that

E

[∫ t′

0

e(θ1−θ2p)ν ∥S(ν)∥p
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥p dν
]

=

∫ t′

0

e(θ1−θ2p)νE

[
∥S(ν)∥p

∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥p] dν
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≤
∫ t′

0

e(θ1−θ2p)νE
[
∥S(ν)∥2p

] 1
2

E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2p
] 1

2

dν.

We develop the bound further as follows:

E

[∫ t′

0

e(θ1−θ2p)ν ∥S(ν)∥p
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥p dν
]

≤

∫ t′

0

e(θ1−θ2p)νE

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2p
] 1

2

dν

E

[(
S
)2p
t′

] 1
2

,

which, upon using Lemma B.2 on the inner expectation, leads to

E

[∫ t′

0

e(θ1−θ2p)ν ∥S(ν)∥p
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥p dν
]

≤
(
p
2p− 1

2θ2

) p
2

(∫ t′

0

e(θ1−θ2p)ν
(
e2θ2ν − 1

) p
2 E

[(
L
)2p
ν

] 1
2

dν

)
E

[(
S
)2p
t′

] 1
2

≤
(
p
2p− 1

2θ2

) p
2

(∫ t′

0

e(θ1−θ2p)ν
(
e2θ2ν − 1

) p
2 dν

)
E

[(
L
)2p
t′

] 1
2

E

[(
S
)2p
t′

] 1
2

, (B.18)

where the last inequality follows from the fact that [0, ν] ⊆ [0, t′] and thus supβ∈[0,ν] ∥L(β)∥F ≤ supβ∈[0,t′] ∥L(β)∥F .
The integral term can be bounded as∫ t′

0

e(θ1−θ2p)ν
(
e2θ2ν − 1

) p
2 dν =

∫ t′

0

eθ1ν
(
e−2θ2ν

) p
2
(
e2θ2ν − 1

) p
2 dν =

∫ t′

0

eθ1ν
(
1− e−2θ2ν

) p
2 dν

≤
∫ t′

0

eθ1νdν,

where we have used the strict positivity of θ2 to obtain the last inequality. Substituting this bound into (B.18) produces

E

[∫ t′

0

e(θ1−θ2p)ν ∥S(ν)∥p
∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥p dν
]

≤
(
p
2p− 1

2θ2

) p
2

(∫ t′

0

eθ1νdν

)
E

[(
L
)2p
t′

] 1
2

E

[(
S
)2p
t′

] 1
2

, (B.19)

Substituting (B.17) and (B.19) into (B.16) produces

E
[(
N
)p
t′

]
≤E

[(
N
)p
t′

] p−1
p

[(∫ t′

0

eθ1νdν

)(
p3

2p− 1

2θ2

) 1
2

E

[(
L
)2p
t′

] 1
2p

E

[(
S
)2p
t′

] 1
2p

]
.

The proof is then completed by concluding from the above inequality that

E
[(
N
)p
t′

] 1
p

≤

(∫ t′

0

eθ1νdν

)(
p3

2p− 1

2θ2

) 1
2

E

[(
L
)2p
t′

] 1
2p

E

[(
S
)2p
t′

] 1
2p

=
(
eθ1t

′
− 1
) 1

θ1
√
θ2

(
p3

2p− 1

2

) 1
2

E

[(
L
)2p
t′

] 1
2p

E

[(
S
)2p
t′

] 1
2p

≤ eθ1t
′ 1

θ1
√
θ2

(
p3

2p− 1

2

) 1
2

E

[(
L
)2p
t′

] 1
2p

E

[(
S
)2p
t′

] 1
2p

,

where we have used the strict positivity of θ1 to obtain the last inequality.
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The following corollary to the last lemma considers a particular type of integral that we encounter due to the structure
of the control law in Sec. 3.1.
Corollary B.1 Consider a complete filtered probability space (Ω,F ,P) with filtration Ft, and let R ∈ Mloc

2 (Sm|Ft),
S ∈ Mloc

2 (Rm|Ft), and L ∈ Mloc
2 (Rm×nq |Ft) satisfy

E

[∫ T

0

(
∥R(ν)∥2p + ∥S(ν)∥2p + ∥L(ν)∥2pF

)
dν

]
<∞, ∀p ≥ 1.

Additionally, for any strictly positive constants θ1, θ2 ∈ R>0 and an Ft-adapted Brownian motion Qt ∈ Rnq define
(

N(t) =

∫ t

0

e2(θ1−θ2)ν

(

R(ν)⊤R(ν)

(

R(ν)dν ∈ R, t ∈ [0, T ], (B.20)

where
(

R(t) =

∫ t

0

eθ2β [S(β)dβ + L(β)dQβ ] ∈ Rm.

If there exists a constant ∆R ∈ R>0 such that

∥R(t)∥F ≤ ∆R, ∀t ∈ [0, T ],

then, the following bound holds for any constant t′ ∈ [0, T ] and for all p ∈ N≥1:

∥∥∥( (

N
)
t′

∥∥∥
p
≤ p∆Re

2θ1t
′

2θ1

(
1

θ2

∥∥∥(S)
t′

∥∥∥
2p

+

(
p
2p− 1

2

) 1
2 1√

θ2

∥∥∥(L)
t′

∥∥∥
2p

)2

. (B.21)

Proof. The proof follows the identical line of reasoning as that of Lemma B.3. We begin with the case when p = 1,
for which we have∣∣∣ (

N(t)
∣∣∣ ≤ ∫ t

0

e2(θ1−θ2)ν ∥R(ν)∥F
∥∥∥ (

R(ν)
∥∥∥2 dν ≤ ∆R

∫ t

0

e2(θ1−θ2)ν
∥∥∥ (
R(ν)

∥∥∥2 dν, t ∈ [0, T ].

Since the right hand side is a non-decreasing function over t ∈ [0, t′],∣∣∣ (

N(t)
∣∣∣ ≤ ∆R

∫ t′

0

e2(θ1−θ2)ν
∥∥∥ (

R(ν)
∥∥∥2 dν, t ∈ [0, T ],

and thus ( (

N
)
t′
≤ ∆R

∫ t′

0

e2(θ1−θ2)ν
∥∥∥ (

R(ν)
∥∥∥2 dν.

Consequently,

E
[( (

N
)
t′

]
≤ ∆R

∫ t′

0

e2(θ1−θ2)νE

[∥∥∥ (

R(ν)
∥∥∥2] dν. (B.22)

Next, it follows from the definition of

(

R(t) that

E

[∥∥∥ (

R(ν)
∥∥∥2] = E

[( (

R(ν)⊤

(

R(ν)
)]
,

which leads to the following bound:

E

[∥∥∥ (

R(ν)
∥∥∥2] ≤ E

[(∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥+ ∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥)2
]

= E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2
]
+ E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2
]

33



L1-DRAC: Distributionally Robust Adaptive Control
Global Results

+ 2E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥ ∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥] ,
for 0 ≤ ν ≤ t ≤ T . It then follows from the Cauchy-Schwarz inequality that

E

[∥∥∥ (

R(ν)
∥∥∥2] ≤ E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2
]
+ E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2
]

+ 2E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2
] 1

2

E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2
] 1

2

, (B.23)

for 0 ≤ ν ≤ t ≤ T . Now, we have the following inequality:

E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2
]
≤ E

[∥∥∥∥∫ ν

0

eθ2βdβ

∥∥∥∥2 (S)2
ν

]
≤
(
eθ2ν

θ2

)2

E

[(
S
)2
ν

]
, ∀0 ≤ ν ≤ t ≤ T. (B.24)

Similarly, using Lemma B.2, we have

E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2
]
≤ e2θ2ν

2θ2
E

[(
L
)2
ν

]
, ∀0 ≤ ν ≤ t ≤ T. (B.25)

Substituting the bounds (B.24) and (B.25) into (B.23) produces

E

[∥∥∥ (

R(ν)
∥∥∥2] ≤ e2θ2ν

θ22
E

[(
S
)2
ν

]
+
e2θ2ν

2θ2
E

[(
L
)2
ν

]
+

√
2
e2θ2ν

θ2
√
θ2

E

[(
S
)2
ν

] 1
2

E

[(
L
)2
ν

] 1
2

,

for all 0 ≤ ν ≤ t ≤ T . Substituting the above bound into (B.22) yields

E
[( (

N
)
t′

]
≤ ∆R

∫ t′

0

e2θ1ν

(
1

θ22
E

[(
S
)2
ν

]
+

1

2θ2
E

[(
L
)2
ν

]
+
√
2

1

θ2
√
θ2

E

[(
S
)2
ν

] 1
2

E

[(
L
)2
ν

] 1
2

)
dν

≤ ∆R

(∫ t′

0

e2θ1νdν

)(
1

θ22
E

[(
S
)2
t′

]
+

1

2θ2
E

[(
L
)2
t′

]
+
√
2

1

θ2
√
θ2

E

[(
S
)2
t′

] 1
2

E

[(
L
)2
t′

] 1
2

)
.

Solving the integral and using the strict positivity of θ1 ∈ R>0 produces

E
[( (

N
)
t′

]
≤∆Re

2θ1t
′

2θ1

(
1

θ22
E

[(
S
)2
t′

]
+

1

2θ2
E

[(
L
)2
t′

]
+
√
2

1

θ2
√
θ2

E

[(
S
)2
t′

] 1
2

E

[(
L
)2
t′

] 1
2

)

=
∆Re

2θ1t
′

2θ1

(
1

θ2
E

[(
S
)2
t′

] 1
2

+
1√
2θ2

E

[(
L
)2
t′

] 1
2

)2

,

thus proving (B.21) for p = 1.

Next, consider p ∈ N≥2. Since

(

N(t) is a standard Lebesgue integral with a t-continuous integrand, the fundamental
theorem for the Lebesgue integral [106, Thm. 6.4.1] implies that

(

N(t) is absolutely continuous on [0, T ] and

d

(

N(t) = e2(θ1−θ2)t

(

R(t)⊤R(t)

(

R(t)dt, µL-a.e. on [0, T ],

where µL denotes the Lebesgue measure. Using the chain rule one then sees that∣∣∣ (

N(t)
∣∣∣p = p

∫ t

0

∣∣∣ (

N(ν)
∣∣∣p−2 (

N(ν)e2(θ1−θ2)ν

(

R(ν)⊤R(ν)

(

R(ν)dν

≤ p

∫ t

0

∣∣∣ (

N(ν)
∣∣∣p−1

e2(θ1−θ2)ν ∥R(ν)∥F
∥∥∥ (

R(ν)
∥∥∥2 dν,

≤ p∆R

∫ t

0

∣∣∣ (

N(ν)
∣∣∣p−1

e2(θ1−θ2)ν
∥∥∥ (

R(ν)
∥∥∥2 dν, t ∈ [0, T ].
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Since the right hand side is a non decreasing function over t ∈ [0, t′], it then follows that∣∣∣ (

N(t)
∣∣∣p ≤ p∆R

∫ t′

0

∣∣∣ (

N(ν)
∣∣∣p−1

e2(θ1−θ2)ν
∥∥∥ (

R(ν)
∥∥∥2 dν, ∀t ∈ [0, t′],

and thus ( (

N
)p
t′
≤ p∆R

∫ t′

0

∣∣∣ (

N(ν)
∣∣∣p−1

e2(θ1−θ2)ν
∥∥∥ (

R(ν)
∥∥∥2 dν.

It then follows that

E
[( (

N
)p
t′

]
≤p∆RE

[∫ t′

0

∣∣∣ (

N(ν)
∣∣∣p−1

e2(θ1−θ2)ν
∥∥∥ (

R(ν)
∥∥∥2 dν]

(i)
=p∆RE

[∫ t′

0

(∣∣∣ (

N(ν)
∣∣∣p−1

e2θ1(p−1)ν/p

)(
e2(θ1/p−θ2)ν

∥∥∥ (

R(ν)
∥∥∥2) dν]

(ii)

≤ p∆RE

[∫ t′

0

∣∣∣ (

N(ν)
∣∣∣p e2θ1νdν]

p−1
p

E

[∫ t′

0

e2(θ1−θ2p)ν
∥∥∥ (

R(ν)
∥∥∥2p dν] 1

p

, (B.26)

where we obtain (i) by writing

e2(θ1−θ2)ν = e2[θ1(
p−1
p + 1

p )−θ2]ν = e2θ1(p−1)ν/pe2(θ1/p−θ2)ν ,

and (ii) follows from Hölder’s inequality with conjugates p/(p− 1) and p.

Now, we have the following straightforward inequality:

E

[∫ t′

0

∣∣∣ (

N(ν)
∣∣∣p e2θ1νdν] ≤ E

[(∫ t′

0

e2θ1νdν

)( (

N
)p
t′

]
=

(∫ t′

0

e2θ1νdν

)
E
[( (

N
)p
t′

]
, (B.27)

where we have used the fact that t′ is a constant.

Next, it follows from the definition of

(

R(t) that

E

[∥∥∥ (

R(ν)
∥∥∥2p] 1

p

= E
[( (

R(ν)⊤

(

R(ν)
)p] 1

p

,

which leads to the following bound:

E

[∥∥∥ (

R(ν)
∥∥∥2p] 1

p

≤ E

[(∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2 + ∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2 + 2

∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥ ∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥
)p] 1

p

,

for 0 ≤ ν ≤ t ≤ T . It then follows from the Minkowski inequality that

E

[∥∥∥ (

R(ν)
∥∥∥2p] 1

p

≤ E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2p
] 1

p

+ E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2p
] 1

p

+ 2E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥p ∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥p]
1
p

,

which, upon an application of the Cauchy-Schwarz inequality produces

E

[∥∥∥ (

R(ν)
∥∥∥2p] 1

p

≤ E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2p
] 1

p

+ E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2p
] 1

p
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+ 2E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2p
] 1

2p

E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2p
] 1

2p

. (B.28)

Now, we have the following inequality:

E

[∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2p
]
≤ E

[∥∥∥∥∫ ν

0

eθ2βdβ

∥∥∥∥2p (S)2pν
]
≤
(
eθ2ν

θ2

)2p

E

[(
S
)2p
ν

]
, ∀0 ≤ ν ≤ t ≤ T. (B.29)

Similarly, using Lemma B.2, we have

E

[∥∥∥∥∫ ν

0

eθ2βL(β)dQβ

∥∥∥∥2p
]
≤
(
p
2p− 1

2

)p(
e2θ2ν

θ2

)p

E

[(
L
)2p
ν

]
, ∀0 ≤ ν ≤ t ≤ T. (B.30)

Substituting (B.29) - (B.30) into (B.28) leads to

E

[∥∥∥ (

R(ν)
∥∥∥2p] 1

p

≤ e2θ2ν

(
1

θ22
E

[(
S
)2p
ν

] 1
p

+

(
p
2p− 1

2

)
1

θ2
E

[(
L
)2p
ν

] 1
p

+ 2

(
p
2p− 1

2

) 1
2 1

θ2
√
θ2

E

[(
S
)2p
ν

] 1
2p

E

[(
L
)2p
ν

] 1
2p

)
,

and thus

E

[∥∥∥ (

R(ν)
∥∥∥2p] ≤ e2θ2pν

(
1

θ22
E

[(
S
)2p
ν

] 1
p

+

(
p
2p− 1

2

)
1

θ2
E

[(
L
)2p
ν

] 1
p

+ 2

(
p
2p− 1

2

) 1
2 1

θ2
√
θ2

E

[(
S
)2p
ν

] 1
2p

E

[(
L
)2p
ν

] 1
2p

)p

. (B.31)

Furthermore, since

E

[∫ t′

0

e2(θ1−θ2p)ν
∥∥∥ (

R(ν)
∥∥∥2p dν] =

∫ t′

0

e2(θ1−θ2p)νE

[∥∥∥ (

R(ν)
∥∥∥2p] dν,

we may use (B.31) and conclude that

E

[∫ t′

0

e2(θ1−θ2p)ν
∥∥∥ (

R(ν)
∥∥∥2p dν] ≤

∫ t′

0

e2θ1ν

(
1

θ22
E

[(
S
)2p
ν

] 1
p

+

(
p
2p− 1

2

)
1

θ2
E

[(
L
)2p
ν

] 1
p

+ 2

(
p
2p− 1

2

) 1
2 1

θ2
√
θ2

E

[(
S
)2p
ν

] 1
2p

E

[(
L
)2p
ν

] 1
2p

)p

dν.

We develop the bound further as follows:

E

[∫ t′

0

e2(θ1−θ2p)ν
∥∥∥ (

R(ν)
∥∥∥2p dν]

≤

(∫ t′

0

e2θ1νdν

)(
1

θ22
E

[(
S
)2p
t′

] 1
p

+

(
p
2p− 1

2

)
1

θ2
E

[(
L
)2p
t′

] 1
p

+ 2

(
p
2p− 1

2

) 1
2 1

θ2
√
θ2

E

[(
S
)2p
t′

] 1
2p

E

[(
L
)2p
t′

] 1
2p

)p

. (B.32)

Substituting (B.27) and (B.32) into (B.26) produces

E
[( (

N
)p
t′

]
≤ p∆RE

[( (

N
)p
t′

] p−1
p

(∫ t′

0

e2θ1νdν

)(
1

θ22
E

[(
S
)2p
t′

] 1
p

+

(
p
2p− 1

2

)
1

θ2
E

[(
L
)2p
t′

] 1
p
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+ 2

(
p
2p− 1

2

) 1
2 1

θ2
√
θ2

E

[(
S
)2p
t′

] 1
2p

E

[(
L
)2p
t′

] 1
2p

)
,

and thus

E
[( (

N
)p
t′

] 1
p

≤ p∆R

(∫ t′

0

e2θ1νdν

)(
1

θ22
E

[(
S
)2p
t′

] 1
p

+

(
p
2p− 1

2

)
1

θ2
E

[(
L
)2p
t′

] 1
p

+ 2

(
p
2p− 1

2

) 1
2 1

θ2
√
θ2

E

[(
S
)2p
t′

] 1
2p

E

[(
L
)2p
t′

] 1
2p

)
.

Solving the integral and using the strict positivity of θ1 ∈ R>0 then completes the proof.

Next, we provide a converse result to Lemma B.3 in which we derive a bound on a particular Itô integral with a
Lebesgue integral in the integrand.
Lemma B.4 Let S ∈ Mloc

2 (Rm|Ft), L ∈ Mloc
2 (Rm×nq |Ft), Ft-adapted Brownian motion Qt ∈ Rnq , and strictly

positive constants θ1, θ2 ∈ R>0 be as in Lemma B.3. Define

N̂(t) =

∫ t

0

e(θ1−θ2)ν

(∫ ν

0

eθ2βS(β)dβ

)⊤

L(ν)dQν ∈ R, t ∈ [0, T ]. (B.33)

Then, the following bound holds for any constant t′ ∈ [0, T ]:∥∥∥(N̂)
t′

∥∥∥
p
≤ 2

√
p
eθ1t

′

√
θ1θ2

∥∥∥(S)
t′

∥∥∥
2p

∥∥∥(L)
t′

∥∥∥
2p
, ∀p ∈ N≥1. (B.34)

Proof. We begin by noting that the inner Lebesgue integral is absolute continuous on [0, T ] by fundamental theorem
for the Lebesgue integral [106, Thm. 6.4.1], and S ∈ Mloc

2 (Rm|Ft) implies that∫ t

0

eθ2βS(β)dβ ∈ Mloc
2 (Rm|Ft) .

It follows then from [108, Thm. 5.5.2] that N̂(t) is a continuous local martingale with respect to the filtration Ft since
L ∈ Mloc

2 (Rm×nq |Ft). Furthermore, N̂(0) = 0, and hence we invoke the Burkholder-Davis-Gundy inequality [108,
Thm. 5.5.1] for the stopping time t′ to obtain

E
[(
N̂
)p
t′

]
≤ (8p)

p
2 E

[〈
N̂
〉 p

2

t′

]
= (8p)

p
2 E


∫ t′

0

e2(θ1−θ2)ν

∥∥∥∥∥
(∫ ν

0

eθ2βS(β)dβ

)⊤

L(ν)

∥∥∥∥∥
2

dν


p
2

 . (B.35)

We now develop the bound on the integral term as follows:∫ t′

0

e2(θ1−θ2)ν

∥∥∥∥∥
(∫ ν

0

eθ2βS(β)dβ

)⊤

L(ν)

∥∥∥∥∥
2

dν ≤
∫ t′

0

e2(θ1−θ2)ν

∥∥∥∥∫ ν

0

eθ2βS(β)dβ

∥∥∥∥2 ∥L(ν)∥2F dν
≤

[∫ t′

0

e2(θ1−θ2)ν

(∫ ν

0

eθ2βdβ

)2 (
S
)2
ν
dν

](
L
)2
t′
.

It then follows that∫ t′

0

e2(θ1−θ2)ν

∥∥∥∥∥
(∫ ν

0

eθ2βS(β)dβ

)⊤

L(ν)

∥∥∥∥∥
2

dν ≤

[∫ t′

0

e2(θ1−θ2)ν

(∫ ν

0

eθ2βdβ

)2

dν

](
S
)2
t′

(
L
)2
t′
. (B.36)

Solving the integrals one sees that∫ t′

0

e2(θ1−θ2)ν

(∫ ν

0

eθ2βdβ

)2

dν
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=

(
1

θ2

)2 ∫ t′

0

e2(θ1−θ2)ν
(
eθ2ν − 1

)2
dν

(⋆)

≤
(

1

θ2

)2 ∫ t′

0

e2(θ1−θ2)νe2θ2νdν =

(
1

θ2

)2 ∫ t′

0

e2θ1νdν,

where we have utilized the strict positivity of θ2 ∈ R>0 to obtain (⋆). It then follows from the strict positivity of
θ1 ∈ R>0 that ∫ t′

0

e2(θ1−θ2)ν

(∫ ν

0

eθ2βdβ

)2

dν ≤
(
e2θ1t

′
− 1
) 1

2θ1

(
1

θ2

)2

≤ e2θ1t
′ 1

2θ1

(
1

θ2

)2

.

We then obtain the following upon substituting the above inequality into (B.36):∫ t′

0

e2(θ1−θ2)ν

∥∥∥∥∥
(∫ ν

0

eθ2βS(β)dβ

)⊤

L(ν)

∥∥∥∥∥
2

dν ≤ e2θ1t
′ 1

2θ1

(
1

θ2

)2 (
S
)2
t′

(
L
)2
t′
.

The proof is then concluded by substituting the above bound into (B.35) and performing the following manipulations:

E
[(
N̂
)p
t′

]
≤ (4p)

p
2 E

[(
eθ1t

′

√
θ1θ2

)p (
S
)p
t′

(
L
)p
t′

]
(i)
= (4p)

p
2

(
eθ1t

′

√
θ1θ2

)p

E
[(
S
)p
t′

(
L
)p
t′

]
(ii)

≤ (4p)
p
2

(
eθ1t

′

√
θ1θ2

)p

E

[(
S
)2p
t′

] 1
2

E

[(
L
)2p
t′

] 1
2

,

where (i) and (ii) are due to t′ being a constant and the Cauchy-Schwarz inequality, respectively.

We need the following result for Lemma B.6.
Lemma B.5 Consider a complete filtered probability space (Ω,F ,P) with filtration Ft, and let R1, R2 ∈
Mloc

2 (Rm×nq |Ft) satisfy

E

[∫ T

0

∥R1(ν) +R2(ν)∥4pF dν

]
<∞, ∀p ≥ 1.

Additionally, for any strictly positive constants κ1, κ2 ∈ R>0 and an Ft-adapted Brownian motion Qt ∈ Rnq , define
for all t ∈ [0, T ]

R̂(t) =

∫ t

0

e2(κ1−κ2)ν
∥∥∥R̂1(ν)

∥∥∥2 dν ∈ R≥0, R̂1(t) = R1(t)
⊤R̂2(t) ∈ Rnq , R̂2(t) =

∫ t

0

eκ2βR2(β)dQβ ∈ Rm.

Then, for all t ∈ [0, T ]

E
[
R̂(t)

p
2

]
≤
(
p2

4p− 1

2

) p
2
(

eκ1t

√
κ1κ2

)p

E

[(
R2

)4p
t

] 1
4

E

[(
R1

)4p
t

] 1
4

, ∀p ∈ N≥1. (B.37)

Proof. We begin with the case when p = 1. Since R̂(t) ≥ 0, using the Cauchy-Schwarz inequality (or alternatively,
Jensen’s inequality) one sees that

E
[
R̂(t)

1
2

]2
≤ E

[
R̂(t)

]
= E

[∫ t

0

e2(κ1−κ2)ν
∥∥∥R̂1(ν)

∥∥∥2 dν] = ∫ t

0

e2(κ1−κ2)νE

[∥∥∥R̂1(ν)
∥∥∥2] dν, t ∈ [0, T ].

It follows then from the definition R̂1(t) = R1(t)
⊤R̂2(t) that

E
[
R̂(t)

1
2

]2
≤
∫ t

0

e2(κ1−κ2)νE

[
∥R1(ν)∥2F

∥∥∥R̂2(ν)
∥∥∥2] dν

(⋆)

≤
∫ t

0

e2(κ1−κ2)νE
[
∥R1(ν)∥4F

] 1
2

E

[∥∥∥R̂2(ν)
∥∥∥4] 1

2

dν
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≤

(∫ t

0

e2(κ1−κ2)νE

[∥∥∥R̂2(ν)
∥∥∥4] 1

2

dν

)
E

[(
R1

)4
t

] 1
2

, t ∈ [0, T ], (B.38)

where (⋆) is a consequence of the Cauchy-Schwarz inequality. We now use Lemma B.2 to see that

E

[∥∥∥R̂2(ν)
∥∥∥4] 1

2

= E

[∥∥∥∥∫ ν

0

eκ2βR2(β)dQβ

∥∥∥∥4
] 1

2

≤ 3

(
e2κ2ν − 1

κ2

)
E

[(
R2

)4
ν

] 1
2

, ∀ν ∈ [0, t].

Substituting the above for the inner expectation in (B.38) then produces

E
[
R̂(t)

1
2

]2
≤3

(∫ t

0

e2(κ1−κ2)ν

(
e2κ2ν − 1

κ2

)
E

[(
R2

)4
ν

] 1
2

dν

)
E

[(
R1

)4
t

] 1
2

≤3

(∫ t

0

e2(κ1−κ2)ν

(
e2κ2ν − 1

κ2

)
dν

)
E

[(
R2

)4
t

] 1
2

E

[(
R1

)4
t

] 1
2

, t ∈ [0, T ].

It then follows that

E
[
R̂(t)

1
2

]
≤

√
3

(∫ t

0

e2(κ1−κ2)ν

(
e2κ2ν − 1

κ2

)
dν

) 1
2

E

[(
R2

)4
t

] 1
4

E

[(
R1

)4
t

] 1
4

, t ∈ [0, T ].

Then, one establishes (B.37) for p = 1 by using the strict positivity of κ1, κ2 ∈ R>0 to obtain∫ t

0

e2(κ1−κ2)ν

(
e2κ2ν − 1

κ2

)
dν =

∫ t

0

e2κ1ν

(
1− e−2κ2ν

κ2

)
dν ≤

(∫ t

0

e2κ1νdν

)
1

κ2
,

and thus ∫ t

0

e2(κ1−κ2)ν

(
e2κ2ν − 1

κ2

)
dν ≤ e2κ1t − 1

2κ1κ2
≤ e2κ1t

2κ1κ2
.

Next, consider the case when p ∈ N≥2. The fundamental theorem for the Lebesgue integral [106, Thm. 6.4.1] implies
that R̂(t) is absolutely continuous on [0, T ] and

dR̂(t) = e2(κ1−κ2)t
∥∥∥R̂1(t)

∥∥∥2 dt, µL-a.e. on [0, T ],

where µL denotes the Lebesgue measure. Therefore, since R̂(t) ≥ 0, the chain rule implies that

R̂(t)p = p

∫ t

0

R̂(ν)p−1e2(κ1−κ2)ν
∥∥∥R̂1(ν)

∥∥∥2 dν, t ∈ [0, T ].

It then follows that

E
[
R̂(t)p

]
=pE

[∫ t

0

R̂(ν)p−1e2(κ1−κ2)ν
∥∥∥R̂1(ν)

∥∥∥2 dν]
=pE

[∫ t

0

(
e2κ1(p−1)ν/pR̂(ν)p−1

)(
e2(κ1/p−κ2)ν

∥∥∥R̂1(ν)
∥∥∥2) dν] , (B.39)

where the last expression is due to

e2(κ1−κ2)ν = e2[κ1( p−1
p + 1

p )−κ2]ν = e2κ1(p−1)ν/pe2(κ1/p−κ2)ν .

Using Hölder’s inequality with conjugates p/(p− 1) and p, one sees that

E
[
R̂(t)p

]
≤ pE

[∫ t

0

e2κ1νR̂(ν)pdν

] p−1
p

E

[∫ t

0

e2(κ1−κ2p)ν
∥∥∥R̂1(ν)

∥∥∥2p dν] 1
p

= p

(∫ t

0

e2κ1νE
[
R̂(ν)p

]
dν

) p−1
p
(∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν) 1

p
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≤ p

(∫ t

0

e2κ1νdν

) p−1
p

E
[
R̂(t)p

] p−1
p

(∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν) 1

p

,

where we have used the fact that E
[
R̂(t)p

]
is non-decreasing in t as implied by (B.39). It then follows that

E
[
R̂(t)p

] 1
p ≤ p

(∫ t

0

e2κ1νdν

) p−1
p
(∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν) 1

p

,

and thus

E
[
R̂(t)p

]
≤ pp

(∫ t

0

e2κ1νdν

)p−1 ∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν, ∀t ∈ [0, T ]. (B.40)

Now, using the definition R̂1(t) = R1(t)
⊤R̂2(t), we obtain∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν ≤

∫ t

0

e2(κ1−κ2p)νE

[
∥R1(ν)∥2pF

∥∥∥R̂2(ν)
∥∥∥2p] dν.

Using the Cauchy-Schwarz inequality, one sees that∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν ≤

∫ t

0

e2κ1νE
[
∥R1(ν)∥4pF

] 1
2

E

[∥∥∥R̂2(ν)
∥∥∥4p] 1

2

dν

≤

(∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂2(ν)
∥∥∥4p] 1

2

dν

)
E

[(
R1

)4p
t

] 1
2

, ∀t ∈ [0, T ].

It then follows from the definition of R̂2(t) that∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν ≤

∫ t

0

e2(κ1−κ2p)νE

[∥∥∥∥∫ ν

0

eκ2βR2(β)dQβ

∥∥∥∥4p
] 1

2

dν

E

[(
R1

)4p
t

] 1
2

,

for all t ∈ [0, T ]. Consequently, using Lemma B.2 to bound the inner expectation leads to∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν

≤ pp(4p− 1)p

(∫ t

0

e2(κ1−κ2p)ν

(
e2κ2ν − 1

κ2

)p

E

[(
R2

)4p
ν

] 1
2

dν

)
E

[(
R1

)4p
t

] 1
2

≤ pp(4p− 1)p
(∫ t

0

e2(κ1−κ2p)ν

(
e2κ2ν − 1

κ2

)p

dν

)
E

[(
R2

)4p
t

] 1
2

E

[(
R1

)4p
t

] 1
2

. (B.41)

Using the strict positivity of κ2 ∈ R>0, one sees that∫ t

0

e2(κ1−κ2p)ν

(
e2κ2ν − 1

κ2

)p

dν ≤
∫ t

0

e2(κ1−κ2p)ν

(
e2κ2ν

κ2

)p

dν =

∫ t

0

e2κ1νdν

(
1

κ2

)p

.

and thus, (B.41) can be written as∫ t

0

e2(κ1−κ2p)νE

[∥∥∥R̂1(ν)
∥∥∥2p] dν ≤ pp(4p− 1)p

(∫ t

0

e2κ1νdν

)(
1

κ2

)p

E

[(
R2

)4p
t

] 1
2

E

[(
R1

)4p
t

] 1
2

.

Substituting the above bound into (B.40) produces

E
[
R̂(t)p

]
≤ p2p(4p− 1)p

(∫ t

0

e2κ1νdν

)p(
1

κ2

)p

E

[(
R2

)4p
t

] 1
2

E

[(
R1

)4p
t

] 1
2

, ∀t ∈ [0, T ].

Solving the integral and using the strict positivity of κ1 ∈ R>0, we obtain

E
[
R̂(t)p

]
≤
(
p2

4p− 1

2

)p(
e2κ1t

κ1κ2

)p

E

[(
R2

)4p
t

] 1
2

E

[(
R1

)4p
t

] 1
2

, ∀t ∈ [0, T ].
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The proof is then concluded by observing that R̂(t) ≥ 0, ∀t, and Jensen’s inequality imply that E
[
R̂(t)

p
2

]2
≤

E
[
R̂(t)p

]
.

The following result provides a bound on a class of nested Itô integrals.
Lemma B.6 Consider a complete filtered probability space (Ω,F ,P) with filtration Ft, and let L1, L2 ∈
Mloc

2 (Rm×nq |Ft) satisfy

E

[∫ T

0

∥L1(ν) + L2(ν)∥4pF dν

]
<∞, ∀p ≥ 1. (B.42)

Additionally, for any strictly positive constants θ1, θ2 ∈ R>0 and an Ft-adapted Brownian motion Qt ∈ Rnq define

Ñ(t) =

∫ t

0

eθ2ν
(∫ t

ν

e(θ1−θ2)βL1(β)dQβ

)⊤

L2(ν)dQν ∈ R, t ∈ [0, T ].

Then, the following bound holds for any constant t′ ∈ [0, T ]:∥∥∥(Ñ)
t′

∥∥∥
p
≤ 2p

3
2 (4p− 1)

1
2
eθ1t

′

√
θ1θ2

∥∥∥(L2

)
t′

∥∥∥
4p

∥∥∥(L1

)
t′

∥∥∥
4p

+

√
meθ1t

′

θ1

∥∥∥(L1L
⊤
2

)
t′

∥∥∥
p
, p ∈ N≥1. (B.43)

Proof. We begin by setting

N1(t) =

∫ t

0

e(θ1−θ2)νL1(ν)dQν ∈ Rm, N2(t) =

∫ t

0

eθ2νL2(ν)dQν ∈ Rm, t ∈ [0, T ].

It then follows from the definition of Ñ(t) that

Ñ(t) =

∫ t

0

eθ2ν
(∫ t

ν

e(θ1−θ2)βL1(β)dQβ

)⊤

L2(ν)dQν =

∫ t

0

(∫ t

ν

dN1(β)

)⊤

dN2(ν).

Hence,

Ñ(t) =

∫ t

0

(∫ t

0

dN1(β)

)⊤

dN2(ν)−
∫ t

0

(∫ ν

0

dN1(β)

)⊤

dN2(ν)

= N1(t)
⊤N2(t)−

∫ t

0

N1(ν)
⊤dN2(ν), t ∈ [0, T ]. (B.44)

Next, applying Itô’s lemma toN1(t)
⊤N2(t) (or alternatively using the Itô product rule [95, Sec. 4.4.1] applied element

wise) produces

N1(t)
⊤N2(t) =

∫ t

0

N1(ν)
⊤dN2(ν) +

∫ t

0

N2(ν)
⊤dN1(ν) +

m∑
i=1

〈
N1,i, N2,i

〉
t
, t ∈ [0, T ],

where N1,i, N2,i ∈ R denote the ith scalar-valued process, i ∈ {1, . . . ,m}, of N1(t) and N2(t), respectively, and〈
N1,i, N2,i

〉
t

denotes the cross-variation process between N1,i(t) and N2,i(t) [93, Defn. 2.3.9]. Substituting the

above expression for N1(t)
⊤N2(t) into (B.44) produces

Ñ(t) =

∫ t

0

N2(ν)
⊤dN1(ν) +

m∑
i=1

〈
N1,i, N2,i

〉
t
, t ∈ [0, T ],

which implies that (
Ñ
)
t′
≤ sup

t∈[0,t′]

∣∣∣∣∫ t

0

N2(ν)
⊤dN1(ν)

∣∣∣∣+ sup
t∈[0,t′]

∣∣∣∣∣
m∑
i=1

〈
N1,i, N2,i

〉
t

∣∣∣∣∣ .
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Using Minkowski’s inequality one sees that

E
[(
Ñ
)p
t′

] 1
p

≤ E

[
sup

t∈[0,t′]

∣∣∣∣∫ t

0

N2(ν)
⊤dN1(ν)

∣∣∣∣p
] 1

p

+ E

[
sup

t∈[0,t′]

∣∣∣∣∣
m∑
i=1

〈
N1,i, N2,i

〉
t

∣∣∣∣∣
p] 1

p

. (B.45)

Now, let

N̆(t)
.
=

∫ t

0

N2(ν)
⊤dN1(ν) =

∫ t

0

e(θ1−θ2)ν

(∫ ν

0

eθ2βL2(β)dQβ

)⊤

L1(ν)dQν ∈ R.

The t-continuity of N2(t) [15, Thm. 3.2.5], along with L1, L2 ∈ Mloc
2 (Rm×nq |Ft) imply that N̆(t) is a continuous

local martingale [108, Thm. 5.5.2]. Furthermore, since N̆(0) = 0, we use the Burkholder-Davis-Gundy inequal-
ity [107, Thm. 2] to see that

E
[(
N̆
)p
t′

]
≤ (8p)

p
2 E

[〈
N̆
〉 p

2

t′

]
= (8p)

p
2 E

(∫ t

0

e2(θ1−θ2)ν

∥∥∥∥L1(ν)
⊤
∫ ν

0

eθ2βL2(β)dQβ

∥∥∥∥2 dν
) p

2

 .
Note that the integral inside the expectation can be cast as the process R̂(t) in Lemma B.5 with κi = θi and Ri(t) =
Li(t), i ∈ {1, 2}. It then follows from Lemma B.5 that

E
[(
N̆
)p
t′

]
≤ 2pp

3p
2 (4p− 1)

p
2

(
eθ1t

′

√
θ1θ2

)p

E

[(
L2

)4p
t′

] 1
4

E

[(
L1

)4p
t′

] 1
4

.

Then, since

E

[
sup

t∈[0,t′]

∣∣∣∣∫ t

0

N2(ν)
⊤dN1(ν)

∣∣∣∣p
] 1

p

= E

[
sup

t∈[0,t′]

∣∣∣N̆(t)
∣∣∣p] 1

p

= E
[(
N̆
)p
t′

] 1
p

,

we get that

E

[
sup

t∈[0,t′]

∣∣∣∣∫ t

0

N2(ν)
⊤dN1(ν)

∣∣∣∣p
] 1

p

≤ 2p
3
2 (4p− 1)

1
2
eθ1t

′

√
θ1θ2

∥∥∥(L2

)
t′

∥∥∥
4p

∥∥∥(L1

)
t′

∥∥∥
4p
. (B.46)

Next, it follows from the definition of the cross-variation process [93, Defn. 2.3.9] that
m∑
i=1

〈
N1,i, N2,i

〉
t
=

1

4

m∑
i=1

(〈
N1,i +N2,i

〉
t
−
〈
N1,i −N2,i

〉
t

)
=

m∑
i=1

∫ t

0

eθ1νL1,i(ν)L2,i(ν)
⊤dν,

where L1,i, L2,i ∈ R1×nq denote the ith rows of L1(t) and L2(t), respectively. Hence,∣∣∣∣∣
m∑
i=1

〈
N1,i, N2,i

〉
t

∣∣∣∣∣ ≤
∫ t

0

e(θ1+θ2)ν

∣∣∣∣∣
m∑
i=1

L1,i(ν)L2,i(ν)
⊤

∣∣∣∣∣ dν ≤
√
m

∫ t

0

eθ1ν

(
m∑
i=1

∣∣L1,i(ν)L2,i(ν)
⊤∣∣2) 1

2

dν

=
√
m

∫ t

0

eθ1ν
∥∥L1(ν)L2(ν)

⊤∥∥
F
dν.

We further develop the bound as∣∣∣∣∣
m∑
i=1

〈
N1,i, N2,i

〉
t

∣∣∣∣∣ ≤ √
m

(∫ t

0

eθ1νdν

)(
L1L

⊤
2

)
t
, ∀t ∈ [0, T ],

which further implies that

sup
t∈[0,t′]

∣∣∣∣∣
m∑
i=1

〈
N1,i, N2,i

〉
t

∣∣∣∣∣ ≤ √
m

(∫ t′

0

eθ1νdν

)(
L1L

⊤
2

)
t′
=

√
m
eθ1t

′ − 1

θ1

(
L1L

⊤
2

)
t′
≤

√
meθ1t

′

θ1

(
L1L

⊤
2

)
t′
,

where we have used the strict positivity of θ1 ∈ R>0. Taking expectation on both sides and using the fact that t′ is a
constant produces

E

[
sup

t∈[0,t′]

∣∣∣∣∣
m∑
i=1

〈
N1,i, N2,i

〉
t

∣∣∣∣∣
p] 1

p

≤
√
meθ1t

′

θ1

∥∥∥(L1L
⊤
2

)
t′

∥∥∥
p
. (B.47)

Substituting the bounds (B.46) and (B.47) into (B.45) produces the desired result.
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C Reference Process

We provide the proof of Proposition 3.1 below.

Proof of Proposition 3.1. We consider the case P {YN,0 = Y0 ∈ UN} = 1 w.l.o.g. since otherwise τN = 0 and the
result is trivial.

Note that establishing the well-posedness of YN,t =
[
(Xr

N.t)
⊤

(X⋆
N.t)

⊤] is equivalent to establishing the individual
well-posedness of the following systems:

dX⋆
N,t = F̄N,µ

(
t,X⋆

N,t

)
dt+ F̄N,σ

(
t,X⋆

N,t

)
dW ⋆

t , X⋆
N,0 = x⋆0 ∼ ξ⋆0 , (C.1a)

dXr
N,t = FN,µ

(
t,Xr

N,t, U
r
t

)
dt+ FN,σ

(
t,Xr

N,t

)
dWt, Xr

N,0 = x0 ∼ ξ0, (C.1b)

for t ∈ [0, τN ∧ T ), where F̄N,{µ,σ} and FN,{µ,σ} are defined analogously to GN,{µ,σ} in (27).

The well-posedness of (C.1a) is straightforward to establish using Definition 1, Assumption 1 [47, Thm. 3.4], and due
to F̄N,{µ,σ}(a) ≡ 0, ∀a ∈ Rn with ∥a∥ ≥ 2N .

Now, consider any z ∈ M2 ([0, T ],R
n |W0,t), for any t ∈ [0, T ], and define

M(z(t)) =

∫ t

0

FN,µ (ν, z(ν), U
r
ν ) dν +

∫ t

0

FN,σ (ν, z(ν)) dWν , t ∈ [0, T ]. (C.2)

Let us denote by fN , ΛN,µ, pN , and ΛN,σ be the truncated versions of the functions f , Λµ, p, and Λσ , respectively,
and where the truncation is defined as in (25). Then, we have that

M(z(t)) =

∫ t

0

(fN (ν, z(ν)) + g(ν)Ur
ν + ΛN,µ (ν, z(ν))) dν +

∫ t

0

(pN (ν, z(ν)) + ΛN,σ (ν, z(ν))) dWν ,

for t ∈ [0, T ], where, from (23), we have that

Ur
ν = FωΛ

∥
N,µ (·, z)ν + FN ,ωp

∥
N (·, z) + Λ

∥
N,σ (·, z) ,Wν.

Therefore, the previous expression can be expressed as

M(z(t)) =

∫ t

0

(fN (ν, z(ν)) + ΛN,µ (ν, z(ν))) dν +

∫ t

0

g(ν)FωΛ
∥
N,µ (·, z)νdν

+

∫ t

0

g(ν)FN ,ωp
∥
N (·, z) + Λ

∥
N,σ (·, z) ,Wνdν +

∫ t

0

(pN (ν, z(ν)) + ΛN,σ (ν, z(ν))) dWν , (C.3)

for t ∈ [0, T ]. Using the definition of Fω in (18a), we have that∫ t

0

g(ν)FωΛ
∥
N,µ (·, z)νdν =− ω

∫ t

0

∫ ν

0

g(ν)e−ω(ν−β)Λ
∥
N,µ (β, z(β)) dβdν, t ∈ [0, T ].

Changing the order of integration in the double Lebesgue integral produces∫ t

0

g(ν)FωΛ
∥
N,µ (·, z)νdν =− ω

∫ t

0

(∫ t

ν

g(β)e−ωβdβ

)
eωνΛ

∥
N,µ (ν, z(ν)) dν, t ∈ [0, T ]. (C.4)

Next, using the definition of FN ,ω in (23), we have that∫ t

0

g(ν)FN ,ωp
∥
N (·, z) + Λ

∥
N,σ (·, z) ,Wνdν

= −ω

∫ t

0

∫ ν

0

g(ν)e−ω(ν−β)
(
p
∥
N (β, z(β)) + Λ

∥
N,σ (β, z(β))

)
dWβdν, t ∈ [0, T ].

Applying Lemma B.1 to the above expression for

P (ν) = g(ν)e−ων ∈ C
(
[0, T ];Rn×m

)
,

S(β) = eωβ
(
p
∥
N (β, z(β)) + Λ

∥
N,σ (β, z(β))

)
∈ M

(
[0, T ];Rm×d | W0,t

)
, Qβ =Wβ ,
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produces∫ t

0

g(ν)FN ,ωp
∥
N (·, z) + Λ

∥
N,σ (·, z) ,Wνdν

= −ω

∫ t

0

(∫ t

ν

g(β)e−ωβdβ

)
eων

(
p
∥
N (ν, z(ν)) + Λ

∥
N,σ (ν, z(ν))

)
dWν , t ∈ [0, T ]. (C.5)

Substituting (C.4) and (C.5) into (C.3) yields

M(z(t)) =

∫ t

0

FN,µ (ν, z(ν), U
r
ν ) dν +

∫ t

0

FN,σ (ν, z(ν)) dWν

=

∫ t

0

Mµ (t, ν, z(ν)) dν +

∫ t

0

Mσ (t, ν, z(ν)) dWν , t ∈ [0, T ], (C.6)

where

Mµ (t, ν, z(ν)) = fN (ν, z(ν)) + ΛN,µ (ν, z(ν))− ω

(∫ t

ν

g(β)e−ωβdβ

)
eωνΛ

∥
N,µ (ν, z(ν)) ,

Mσ (t, ν, z(ν)) = pN (ν, z(ν)) + ΛN,σ (ν, z(ν))− ω

(∫ t

ν

g(β)e−ωβdβ

)
eων

(
p
∥
N (ν, z(ν)) + Λ

∥
N,σ (ν, z(ν))

)
,

for ν ∈ [0, t], and t ∈ [0, T ]. Using Assumption 1, we have that∥∥∥∥(∫ t

ν

g(β)e−ωβdβ

)
eων

∥∥∥∥
F

≤
∫ t

ν

∥g(β)∥F e
−ωβdβeων ≤ ∆g

1− e−ω(t−ν)

ω
≤ ∆g

1

ω
, ∀ν ∈ [0, t], t ∈ [0, T ], (C.7)

Thus, we conclude that

∥Mµ (t, ν, z(ν))∥ ≤ ∥fN (ν, z(ν))∥+ ∥ΛN,µ (ν, z(ν))∥+∆g

∥∥Λ∥
N,µ (ν, z(ν))

∥∥ , (C.8a)

∥Mσ (t, ν, z(ν))∥F = ∥pN (ν, z(ν))∥F + ∥ΛN,σ (ν, z(ν))∥F +∆g

∥∥p∥N (ν, z(ν)) + Λ
∥
N,σ (ν, z(ν))

∥∥
F
, (C.8b)

for all ν ∈ [0, t], and t ∈ [0, T ].

Let us set x(t) ≡ x0, and define the Picard iterates for (C.1b) as

xk(t) = x0 +

∫ t

0

FN,µ (ν, xk−1(ν), U
r
ν ) dν +

∫ t

0

FN,σ (ν, xk−1(ν)) dWν , k ∈ N, t ∈ [0, T ].

Then, by the definition of M in (C.2), we have that

xk(t) = x0 +M (xk−1(t)) = x0 +

∫ t

0

Mµ (t, ν, xk−1(ν)) dν +

∫ t

0

Mσ (t, ν, xk−1(ν)) dWν , t ∈ [0, T ].

Since the truncated functions fN , ΛN,µ, pN , and ΛN,σ agree with their non-truncated counterparts on [0, τN ], we
have that over the interval [0, T ] ⊇ [0, τN ], the Assumptions 1 and 4, the truncation definition in (27), along with the
bounds in (C.8), imply linear growth of the integrands in the Picard iterates above. Therefore, as in the proof of [100,
Thm. 2.3.1], we claim the existence of solutions to (C.1b) on [0, T ].

Similarly, using the assumptions of local Lipschitz continuity on the functions f , Λµ, p, and Λσ , we can use the same
arguments as above to establish the uniqueness of solutions to (C.1b) on [0, T ] as in the proof of [100, Thm. 2.3.1].

Furthermore, as above, using the definition of the truncation in (27), we can use (C.8) and show linear growth bounds
and Lipschitz continuity for FN,{µ,σ}, globally over Rn and uniformly in t ∈ R≥0, thus implying the strong Markov
property of the solutions by [100, Thm. 9.3].

Finally, since Gr
N,{µ,σ} (t, ·) = Gr

{µ,σ} (t, ·) for all t ∈ [0, τN ], we may invoke [47, Thm. 3.5], [59, Thm. 5.2.9] to
conclude that YN,t is a unique solution to (25) on [0, τN ].

The next two results help us with the computation of dV (YN,t) in the proof of Lemma 3.1.

44



L1-DRAC: Distributionally Robust Adaptive Control
Global Results

Proposition C.1 Let YN,t be the strong solution of (27), and let τ(t) be the stopping time defined in (29), Lemma 3.1.
Then,∫ τ(t)

0

e2λν
(
∇V (YN,ν)

⊤
Gµ (ν, YN,ν) +

1

2
Tr
[
Hσ (ν, YN,ν)∇2V (YN,ν)

])
dν

≤ −2λ

∫ τ(t)

0

e2λνV (YN,ν) dν +

∫ τ(t)

0

e2λνϕrU (ν, YN,ν) dν

+

∫ τ(t)

0

e2λν
(
ϕrµ (ν, YN,ν) + ϕrµ∥ (ν, YN,ν)

)
dν, (C.9a)∫ τ(t)

0

e2λν∇V (YN,ν)
⊤
Gσ (ν, YN,ν) dŴν

=

∫ τ(t)

0

e2λν
(
ϕrσ⋆

(ν, YN,ν) dW
⋆
ν + [ϕrσ (ν, YN,ν) + ϕrσ∥ (ν, YN,ν)] dWν

)
, (C.9b)

for all t ∈ R≥0, where Hσ (ν, YN,ν) = Gσ (ν, YN,ν)Gσ (ν, YN,ν)
⊤, Gµ (ν, YN,ν) and Gσ (ν, YN,ν) are defined

in (25), and the functions ϕrµ, ϕrσ⋆
, and ϕrσ are defined in (32) in the statement of Lemma 3.1. Additionally, we have

defined

ϕrµ∥ (ν, YN,ν) = Vr (YN,ν)
⊤
g(ν)Λ

∥
µ

(
ν,Xr

N,t

)
, ϕrσ∥ (ν, YN,ν) = Vr (Yν)

⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
,

ϕrU (ν, YN,ν) = Vr (YN,ν)
⊤
g(ν)Ur

ν .

Proof. Using the definitions of Gr
µ in (25), we have that

∇V (YN,ν)
⊤
Gµ (ν, YN,ν) = V⋆ (YN,ν)

⊤
F̄µ

(
ν,X⋆

N,ν

)
+ Vr (YN,ν)

⊤
F̄µ

(
ν,Xr

N,ν

)
+ Vr (YN,ν)

⊤ (
g(ν)Ur

ν + Λµ

(
ν,Xr

N,ν

))
, ν ∈ [0, τ(t)],

which, upon using (9), Assumption 2 can be re-written as

∇V (YN,ν)
⊤
Gµ (ν, YN,ν) ≤ −2λV (YN,ν) + Vr (YN,ν)

⊤ (
g(ν)Ur

ν + Λµ

(
ν,Xr

N,ν

))
, ν ∈ [0, τ(t)]. (C.10)

We develop the expression further by using (11) in Assumption 4 to conclude that

Λµ

(
ν,Xr

N,ν

)
=
[
g(ν) g(ν)⊥

] [Λ∥
µ

(
ν,Xr

N,ν

)
Λ⊥
µ

(
ν,Xr

N,ν

)] = g(ν)Λ
∥
µ

(
ν,Xr

N,ν

)
+ g(ν)⊥Λ⊥

µ

(
ν,Xr

N,ν

)
.

Substituting into (C.10) yields

∇V (YN,ν)
⊤
Gµ (ν, YN,ν) ≤ −2λV (YN,ν) + Vr (YN,ν)

⊤
g(ν)⊥Λ⊥

µ

(
ν,Xr

N,t

)
+ Vr (YN,ν)

⊤
g(ν)

(
Ur
ν + Λ

∥
µ

(
ν,Xr

N,t

))
, ν ∈ [0, τ(t)],

which then leads to (C.9a).

Next, using the definition of Gσ in (25), we have that∫ τ(t)

0

e2λν∇V (YN,ν)
⊤
Gσ (ν, YN,ν) dŴν

=

∫ τ(t)

0

e2λν
(
V⋆ (Yν)

⊤
F̄σ (ν,X

⋆
ν ) dW

⋆
ν + Vr (Yν)

⊤
Fσ (ν,X

r
ν ) dWν

)
=

∫ τ(t)

0

e2λνV⋆ (Yν)
⊤
F̄σ (ν,X

⋆
ν ) dW

⋆
ν

+

∫ τ(t)

0

e2λνVr (Yν)
⊤ (
p
(
ν,Xr

N,ν

)
+ Λσ

(
ν,Xr

N,ν

))
dWν , t ∈ R≥0,

where we have used the definition of Fσ in (2). Since (11) and (12) in Assumptions 4 and 5, respectively, along with
Definition 4 imply that
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p
(
ν,Xr

N,t

)
+ Λσ

(
ν,Xr

N,t

)
= g(ν)⊥p⊥

(
ν,Xr

N,t

)
+ g(ν)⊥Λ⊥

σ

(
ν,Xr

N,t

)
+ g(ν)p

∥ (
ν,Xr

N,t

)
+ g(ν)Λ

∥
σ

(
ν,Xr

N,t

)
= g(ν)⊥F⊥

σ

(
ν,Xr

N,t

)
+ g(ν)F

∥
σ

(
ν,Xr

N,t

)
, ∀ν ∈ [0, τ(t)],

the previous integral equality can be re-written as∫ τ(t)

0

e2λν∇V (YN,ν)
⊤
Gσ (ν, YN,ν) dŴν

=

∫ τ(t)

0

e2λνV⋆ (Yν)
⊤
F̄σ (ν,X

⋆
ν ) dW

⋆
ν +

∫ τ(t)

0

e2λνVr (Yν)
⊤
g(ν)⊥F⊥

σ

(
ν,Xr

N,ν

)
dWν

+

∫ τ(t)

0

e2λνVr (Yν)
⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
dWν , t ∈ R≥0,

thus establishing the expression in (C.9b).

In the subsequent proposition, we derive the expression for how the reference feedback process Ur (23) enters the
truncated joint process YN,t.
Proposition C.2 Let YN,t be the strong solution of (27), and let τ(t) be the stopping time defined in (29), Lemma 3.1.
Then, for the term ϕrU defined in the statement of Proposition C.1, we have that∫ τ(t)

0

e2λνϕrU (ν, YN,ν) dν =

∫ τ(t)

0

(
Ûr
µ (τ(t), ν, YN ;ω) dν + Ûr

σ (τ(t), ν, YN ;ω) dWν

)
+

∫ τ(t)

0

e2λν
(
ϕrUµ

(ν, YN,ν ;ω) dν + ϕrUσ
(ν, YN,ν ;ω) dWν

)
, t ∈ R≥0, (C.11)

where

Ûr
µ (τ(t), ν, YN ;ω)

= e−ωτ(t) ω

2λ− ω

(
eωτ(t)Pr (τ(t), ν)− e2λτ(t)Vr

(
YN,τ(t)

)⊤
g(τ(t))

)
eωνΛ

∥
µ

(
ν,Xr

N,ν

)
,

Ûr
σ (τ(t), ν, YN ;ω)

= e−ωτ(t) ω

2λ− ω

(
eωτ(t)Pr (τ(t), ν)− e2λτ(t)Vr

(
YN,τ(t)

)⊤
g(τ(t))

)
eωνF

∥
σ

(
ν,Xr

N,ν

)
,

ϕrUµ
(ν, YN,ν ;ω) =

ω

2λ− ω
Vr (YN,ν)

⊤
g(ν)Λ

∥
µ

(
ν,Xr

N,ν

)
,

ϕrUσ
(ν, YN,ν ;ω) =

ω

2λ− ω
Vr (YN,ν)

⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
,

and where Pr (τ(t), ν) is defined in (34), Lemma 3.1.

Proof. Using the definition of ϕrU in the statement of Proposition C.1, we have that∫ τ(t)

0

e2λνϕrU (ν, YN,ν) dν

=

∫ τ(t)

0

e2λνVr (YN,ν)
⊤
g(ν)Ur

νdν

=

∫ τ(t)

0

e2λνVr (YN,ν)
⊤
g(ν)

(
Fω

(
Λ
∥
µ (·, Xr)

)
(ν) + FN ,ω

(
p
∥
(·, Xr) + Λ

∥
σ (·, Xr) ,W

)
(ν)
)
dν,

for all t ≥ 0, where we have incorporated the definition of Ur in (23). Next, using the definitions of Fω and
FN ,ω (·,W) in (18a) and (23), respectively, we can re-write the previous expression as∫ τ(t)

0

e2λνϕrU (ν, YN,ν) dν

=

∫ τ(t)

0

∫ ν

0

(
−ωe(2λ−ω)ν

)
Vr (YN,ν)

⊤
g(ν)

(
eωβΛ

∥
µ

(
β,Xr

N,β

)
dβ
)
dν
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+

∫ τ(t)

0

∫ ν

0

(
−ωe(2λ−ω)ν

)
Vr (YN,ν)

⊤
g(ν)

(
eωβF

∥
σ

(
β,Xr

N,β

)
dWβ

)
dν,

for all t ∈ R≥0. Changing the order of integration in the first integral on the right hand side, and applying Lemma B.1
to the second integral:∫ τ(t)

0

e2λνϕrU (ν, YN,ν) dν

=

∫ τ(t)

0

(
−
∫ τ(t)

ν

ωe(2λ−ω)βVr (YN,β)
⊤
g(β)dβ

)
eωνΛ

∥
µ

(
ν,Xr

N,ν

)
dν

+

∫ τ(t)

0

(
−
∫ τ(t)

ν

ωe(2λ−ω)βVr (YN,β)
⊤
g(β)dβ

)
eωνF

∥
σ

(
ν,Xr

N,ν

)
dWν , (C.12)

for all t ∈ R≥0, where in the first integral, we switch between the variables β and ν after changing the order of
integration.

Now, observe that

dβ

[
e(2λ−ω)βVr (YN,β)

⊤
g(β)

]
=

(
d

dβ
e(2λ−ω)β

)
Vr (YN,β)

⊤
g(β) + e(2λ−ω)βdβ

[
Vr (YN,β)

⊤
g(β)

]
,

where dβ [·] denotes the stochastic differential with respect to the variable β. Multiplying both sides by − ω
2λ−ω yields

− ω

2λ− ω
dβ

[
e(2λ−ω)βVr (YN,β)

⊤
g(β)

]
= − ω

2λ− ω

(
d

dβ
e(2λ−ω)β

)
Vr (YN,β)

⊤
g(β)− ω

2λ− ω
e(2λ−ω)βdβ

[
Vr (YN,β)

⊤
g(β)

]
= −ωe(2λ−ω)βVr (YN,β)

⊤
g(β)− ω

2λ− ω
e(2λ−ω)βdβ

[
Vr (YN,β)

⊤
g(β)

]
.

We can alternatively write the expression above as

− ωe(2λ−ω)βVr (YN,β)
⊤
g(β)

= − ω

2λ− ω
dβ

[
e(2λ−ω)βVr (YN,β)

⊤
g(β)

]
+

ω

2λ− ω
e(2λ−ω)βdβ

[
Vr (YN,β)

⊤
g(β)

]
,

which upon integration over the interval [ν, τ(t)] produces

−
∫ τ(t)

ν

ωe(2λ−ω)βVr (YN,β)
⊤
g(β)dβ

= − ω

2λ− ω
e(2λ−ω)τ(t)Vr

(
YN,τ(t)

)⊤
g(τ(t)) +

ω

2λ− ω
e(2λ−ω)νVr (YN,ν)

⊤
g(ν)

+
ω

2λ− ω
Pr (τ(t), ν) ,

where we have used the definition of Pr (τ(t), ν) from (34). Substituting the expression above for the two identical
inner integrals on the right hand side of (C.12) produces (C.11), thus completing the proof upon re-arranging terms.

The next result provides an alternative representation of Pr that is amenable to the analysis of the reference process.
Proposition C.3 Recall the expression for Pr (τ(t), ν) in (34) in the statement of Lemma 3.1 which we restate below:

Pr (τ(t), ν) =

∫ τ(t)

ν

e(2λ−ω)βdβ

[
Vr (YN,β)

⊤
g(β)

]
∈ R1×m, 0 ≤ ν ≤ τ(t), (C.13)

where the τ(t) is defined in (29), and Vr (YN,t)
.
= ∇Xr

N,t
V
(
X⋆

N,t, X
r
N,t

)
∈ Rn. Then, Pr (τ(t), ν) admits the

following representation:

Pr (τ(t), ν) = Pr
◦ (τ(t), ν) + Pr

ad (τ(t), ν) ∈ R1×m, 0 ≤ ν ≤ τ(t), t ∈ R≥0, (C.14)
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where

Pr
◦ (τ(t), ν) =

3∑
i=1

∫ τ(t)

ν

e(2λ−ω)βPr
µi
(β)⊤dβ

+

∫ τ(t)

ν

e(2λ−ω)β
[
Pr
σ(β)dWβ + Pr

σ⋆
(β)dW ⋆

β

]⊤ ∈ R1×m, (C.15a)

Pr
ad (τ(t), ν) =

∫ τ(t)

ν

e(2λ−ω)βPr
U (β)

⊤dβ ∈ R1×m, (C.15b)

and where Pr
U (β), Pr

µ1
(β) ∈ Rm, i ∈ {1, 2, 3}, and Pr

σ(β), Pr
σ⋆
(β) ∈ Rm×d are defined as

Pr
U (β) = g(β)⊤Vr,r (YN,β) g(β)U

r
β ,

Pr
µ1
(β) = ġ(β)⊤Vr (YN,β) ,

Pr
µ2
(β) = g(β)⊤

[
Vr,r (YN,β)

(
F̄µ

(
β,Xr

N,β

)
+ Λµ

(
β,Xr

N,β

))
+ V⋆,r (YN,β)

⊤
F̄µ

(
β,X⋆

N,β

)]
,

Pr
µ3
(β) =

1

2
g(β)⊤T⃗r

[
Hσ (β, YN,β)∇2Vri (YN,β)

]n
i=1

and

Pr
σ(β) = g(β)⊤Vr,r (YN,β)Fσ

(
β,Xr

N,β

)
, Pr

σ⋆
(β) = g(β)⊤V⋆,r (YN,β)

⊤
F̄σ

(
β,X⋆

N,β

)
.

Additionally, we have defined Hσ (β, YN,β)
.
= Gσ (β, YN,β)Gσ (β, YN,β)

⊤ ∈ S2n and

T⃗r
[
Hσ (β, YN,β)∇2Vri (YN,β)

]n
i=1

.
= [T1 (β, YN,β) · · · Tn (β, YN,β)]

⊤ ∈ Rn,

Ti (β, YN,β) = Tr
[
Hσ (β, YN,β)∇2Vri (YN,β)

]
∈ R.

Proof. We begin by writing Vr (YN,β)
⊤
g(β) as

Vr (YN,β)
⊤
g(β) =

[
∇rV (YN,β)

⊤
g·,1(β) · · · ∇rV (YN,β)

⊤
g·,m(β)

]
=
[∑n

i=1 Vri (YN,β) gi,1(β) · · ·
∑n

i=1 Vri (YN,β) gi,m(β)
]
∈ R1×m, (C.16)

where g·j(β) ∈ Rn is the j-th column of g(β). Applying Itô’s lemma to Vri (YN,β) gi,j(β) ∈ R, (i, j) ∈ {1, . . . , n}×
{1, . . . ,m}, and using the truncated dynamics in (27) we get

dβ [Vri (YN,β) gi,j(β)]

=

[
Vri (YN,β) ġi,j(β) +

(
∇Vri (YN,β)

⊤
Gµ (β, YN,β) +

1

2
Tr
[
Hσ (β, YN,β)∇2Vri (YN,β)

])
gi,j(β)

]
dβ

+∇Vri (YN,β)
⊤
Gσ (β, YN,β) gi,j(β)dŴβ , (C.17)

where we have replaced GN,µ and HN,σ = GN,σG
⊤
N,σ ∈ S2n with Gµ and Hσ because from Proposition 3.1, YN,β

is also a strong solution of the joint process (25) for all β ∈ [ν, τ(t)] ⊆ [0, τ⋆] ⊆ [0, τN ]. See (29) for the definition of
the stopping times τ⋆ and τN . Since (C.16) implies that

dβ

[
∇rV (YN,β)

⊤
g·j(β)

]
=

n∑
i=1

dβ [Vri (YN,β) gi,j(β)] ∈ R, j ∈ {1, . . . ,m} ,

we may substitute the expression in (C.17) to obtain

dβ

[
∇rV (YN,β)

⊤
g·j(β)

]
= Vr (YN,β)

⊤
ġ·j(β)dβ +

(
∇Vr (YN,β)

⊤
Gµ (β, YN,β) +

1

2
T⃗r
[
Hσ (β, YN,β)∇2Vri (YN,β)

]n
i=1

)⊤

g·j(β)dβ

+ g·j(β)
⊤∇Vr (YN,β)

⊤
Gσ (β, YN,β) dŴβ ∈ R,
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for j ∈ {1, . . . ,m}. Once again. from (C.16) we have that

Vr (YN,β)
⊤
g(β) =

[
∇rV (YN,β)

⊤
g·,1(β) · · · ∇rV (YN,β)

⊤
g·,m(β)

]
∈ R1×m,

we therefore use the previous expression to write

dβ

[
Vr (YN,β)

⊤
g(β)

]
=Vr (YN,β)

⊤
ġ(β)dβ

+

(
∇Vr (YN,β)

⊤
Gµ (β, YN,β) +

1

2
T⃗r
[
Hσ (β, YN,β)∇2Vri (YN,β)

]n
i=1

)⊤

g(β)dβ

+
(
g(β)⊤∇Vr (YN,β)

⊤
Gσ (β, YN,β) dŴβ

)⊤
∈ R1×m. (C.18)

Now, using the definition of the Hessian of vector valued functions in Sec. 1.3, we observe that

R2n×n ∋ ∇Vr (YN,β) = [∇Vr1 · · · ∇Vrn ] = ∇ · (∇rV )
⊤
=

[
∇r · (∇rV )

⊤

∇⋆ · (∇rV )
⊤

]
=

[
∇2

rV
∇2

⋆,rV

]
=

[
Vr,r (YN,β)
V⋆,r (YN,β)

]
,

where V⋆,r (YN,β) ∈ Rn×n and Vr,r (YN,β) ∈ Sn. Therefore, using the definition of Gµ and Gσ in (25), we get

∇Vr (YN,β)
⊤
Gµ (β, YN,β) =

[
Vr,r (YN,β) V⋆,r (YN,β)

⊤] Fµ

(
β,Xr

N,β , U
r
β

)
F̄µ

(
β,X⋆

N,β

) 
= Vr,r (YN,β)Fµ

(
β,Xr

N,β , U
r
β

)
+ V⋆,r (YN,β)

⊤
F̄µ

(
β,X⋆

N,β

)
∈ Rn,

∇Vr (YN,β)
⊤
Gσ (β, YN,β) dŴβ =

[
Vr,r (YN,β) V⋆,r (YN,β)

⊤] Fσ

(
β,Xr

N,β

)
0n,d

0n,d F̄σ

(
β,X⋆

N,β

)[dWβ

dW ⋆
β

]
= Vr,r (YN,β)Fσ

(
β,Xr

N,β

)
dWβ + V⋆,r (YN,β)

⊤
F̄σ

(
β,X⋆

N,β

)
dW ⋆

β ∈ Rn.

Next, note that the decomposition (4) in Definition 1 states that

Fµ

(
β,Xr

N,β , U
r
β

)
= F̄µ

(
β,Xr

N,β

)
+ g(β)Ur

β + Λµ

(
β,Xr

N,β

)
.

Therefore, the previous expressions can be re-written as

∇Vr (YN,β)
⊤
Gµ (β, YN,β)

= Vr,r (YN,β)
(
F̄µ

(
β,Xr

N,β

)
+ Λµ

(
β,Xr

N,β

))
+ V⋆,r (YN,β)

⊤
F̄µ

(
β,X⋆

N,β

)
+ Vr,r (YN,β) g(β)U

r
β ∈ Rn,

∇Vr (YN,β)
⊤
Gσ (β, YN,β) dŴβ =

[
Vr,r (YN,β) V⋆,r (YN,β)

⊤] Fσ

(
β,Xr

N,β

)
0n,d

0n,d F̄σ

(
β,X⋆

N,β

)[dWβ

dW ⋆
β

]
= Vr,r (YN,β)Fσ

(
β,Xr

N,β

)
dWβ + V⋆,r (YN,β)

⊤
F̄σ

(
β,X⋆

N,β

)
dW ⋆

β ∈ Rn.

Substituting the above identities into (C.18) produces

dβ

[
Vr (YN,β)

⊤
g(β)

]
=

[
3∑

i=1

Pr
µi
(β) + Pr

U (β)

]⊤
dβ +

[
Pr
σ(β)dWβ + Pr

σ⋆
(β)dW ⋆

β

]⊤ ∈ R1×m.

Then, (C.14) is established by substituting the above into (C.13).

The next result establishes the bounds for the pertinent entities in the last proposition.
Proposition C.4 Consider the functions Pr

µi
(t) ∈ Rm, i ∈ {1, 2, 3}, and Pr

σ(t), Pr
σ⋆
(t) ∈ Rm×d defined in the

statement of Proposition C.3. If the stopping time τ⋆, defined in (29), Lemma 3.1, satisfies τ⋆ = t⋆, then
3∑

i=1

∥∥∥(Pr
µi

)
t⋆

∥∥∥π0
⋆

2p
≤
√
n

2
∆g

(
∆∂V ∆

r
Pµ

+
1

2
∆∂2V ∆

r
Pσ

(4p, 2p)

)
+∆ġ

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p
, (C.19a)
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∑
i∈{σ,σ⋆}

∥∥∥(Pr
i

)
t⋆

∥∥∥π0
⋆

q
≤
√
n

2
∆g∆∂V ∆

r
Pσ

(q, q), q ∈ {2p, 4p} , (C.19b)

where

∆r
Pµ

=
∥∥∥(F̄µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(F̄µ (·, X⋆

N )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(Λµ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
,

∆r
Pσ

(r, s) = Eπ0
⋆

[(
F̄σ (·, Xr

N )
)r
t⋆

] 1
s

+ Eπ0
⋆

[(
F̄σ (·, X⋆

N )
)r
t⋆

] 1
s

+ Eπ0
⋆

[(
Λσ (·, Xr

N )
)r
t⋆

] 1
s

,

for (r, s) ∈ {2p, 4p} × {2p, 4p}.

Proof. We begin by using the definition of Pr
µ1

in (C.15a) to obtain∥∥Pr
µ1
(t)
∥∥ ≤ ∥ġ(t)∥F ∥Vr (YN,t)∥ ≤ ∆ġ ∥Vr (YN,t)∥ , ∀t ∈ [0, T ],

where we have used the bound on ġ(t) in Assumption 1. It then follows that(
Pr
µ1

)
t⋆

≤ ∆ġ

(
Vr (YN )

)
t⋆
,

and thus ∥∥∥(Pr
µ1

)
t⋆

∥∥∥π0
⋆

2p
≤ ∆ġ

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p
. (C.20)

Similarly, using the bound on g(t) in Assumption 1, we obtain∥∥Pr
µ2
(t)
∥∥ ≤ ∆g

(
∥Vr,r (YN,t)∥F

(∥∥F̄µ

(
t,Xr

N,t

)∥∥+ ∥∥Λµ

(
t,Xr

N,t

)∥∥)+ ∥V⋆,r (YN,t)∥F
∥∥F̄µ

(
t,X⋆

N,t

)∥∥) , ∀t ∈ [0, T ].

Using the bound in (E.1b), Proposition E.1, produces the following bound:∥∥Pr
µ2
(t)
∥∥ ≤

√
n

2
∆g∆∂V

(∥∥F̄µ

(
t,Xr

N,t

)∥∥+ ∥∥F̄µ

(
t,X⋆

N,t

)∥∥+ ∥∥Λµ

(
t,Xr

N,t

)∥∥) , ∀t ∈ [0, T ].

Therefore, we conclude that(
Pr
µ2

)
t⋆

≤
√
n

2
∆g∆∂V

((
F̄µ (·, Xr

N )
)
t⋆
+
(
F̄µ (·, X⋆

N )
)
t⋆
+
(
Λµ (·, Xr

N )
)
t⋆

)
.

It then follows due to the Minkowski’s inequality that∥∥∥(Pr
µ2

)
t⋆

∥∥∥π0
⋆

2p
≤
√
n

2
∆g∆∂V

(∥∥∥(F̄µ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(F̄µ (·, X⋆

N )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(Λµ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p

)
. (C.21)

Next, we consider the term Pr
µ3

defined in (C.15a), using which we obtain the following bound:

∥∥Pr
µ3
(t)
∥∥ ≤ 1

2
∆g

∥∥∥T⃗r
[
Hσ (t, YN,t)∇2Vri (YN,t)

]n
i=1

∥∥∥ =
1

2
∆g

(
n∑

i=1

|Ti (t, YN,t)|2
) 1

2

, (C.22)

where

Ti (t, YN,t) = Tr
[
Hσ (t, YN,t)∇2Vri (YN,t)

]
∈ R, Hσ (t, YN,t)

.
= Gσ (t, YN,t)Gσ (t, YN,t)

⊤ ∈ S2n.

Now, for ∇2Vri (YN,t) ∈ S2n, it is straightforward to establish that
∥∥∇2Vri (YN,t)

∥∥
F
· I2n − ∇2Vri (YN,t) ∈ S2n

⪰0.
Moreover, by definition S2n ∋ Hσ (t, YN,t) = Gσ (t, YN,t)Gσ (t, YN,t)

⊤ ∈ S2n
⪰0. It then follows from [109,

Thm. 7.5] that

Tr
[
Hσ (t, YN,t)

(∥∥∇2Vri (YN,t)
∥∥
F
· I2n −∇2Vri (YN,t)

)]
≥ 0.

Thus, as a consequence of the linearity of the trace operator

0 ≤Tr
[
Hσ (t, YN,t)

(∥∥∇2Vri (YN,t)
∥∥
F
· I2n −∇2Vri (YN,t)

)]
=
∥∥∇2Vri (YN,t)

∥∥
F

Tr [Hσ (t, YN,t)]− Tr
[
Hσ (t, YN,t)∇2Vri (YN,t)

]
, ∀(t, i) ∈ [0, T ]× {1, . . . , n} ,
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and therefore

Tr
[
Hσ (t, YN,t)∇2Vri (YN,t)

]
≤
∥∥∇2Vri (YN,t)

∥∥
F

Tr [Hσ (t, YN,t)] =
∥∥∇2Vri (YN,t)

∥∥
F
∥Gσ (t, YN,t)∥2F ,

for all (t, i) ∈ [0, T ]× {1, . . . , n}. Using the definition of Gσ in (25), we get

Tr
[
Hσ (t, YN,t)∇2Vri (YN,t)

]
≤
∥∥∇2Vri (YN,t)

∥∥
F
∥Gσ (t, YN,t)∥2F

=
∥∥∇2Vri (YN,t)

∥∥
F

(
∥Fσ (t,XN,t)∥2F +

∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
, (C.23)

and thus

|Ti (t, YN,t)| =
∣∣Tr
[
Hσ (t, YN,t)∇2Vri (YN,t)

]∣∣ ≤ ∥∥∇2Vri (YN,t)
∥∥
F

(
∥Fσ (t,XN,t)∥2F +

∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
,

for all (t, i) ∈ [0, T ]× {1, . . . , n}. Substituting into (C.22) then leads to

∥∥Pr
µ3
(t)
∥∥ ≤ 1

2
∆g

(
n∑

i=1

∥∥∇2Vri (YN,t)
∥∥2
F

) 1
2 (

∥Fσ (t,XN,t)∥2F +
∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
(i)

≤ 1

2
∆g

(
n∑

i=1

∥∥∇2Vri (YN,t)
∥∥2
F

) 1
2 (

∥Fσ (t,XN,t)∥2F +
∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
(ii)

≤ 1

2
∆g

(
n∑

i=1

∥∥∇2Vri (YN,t)
∥∥
F

)(
∥Fσ (t,XN,t)∥2F +

∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
,

for all t ∈ [0, T ], where (i) is due to ∥·∥ .
= ∥·∥2 ≤ ∥·∥F for matrices, and (ii) is due to the equivalence ∥·∥ .

= ∥·∥2 ≤
∥·∥1 for vectors. Substituting the bound in (E.1c), Proposition E.1 produces∥∥Pr

µ3
(t)
∥∥ ≤ 1

2

√
n

2
∆g∆∂2V

(
∥Fσ (t,XN,t)∥2F +

∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
, ∀t ∈ [0, T ].

Consequently (
Pr
µ3

)
t⋆

≤ 1

2

√
n

2
∆g∆∂2V

((
Fσ (·, XN )

)2
t⋆
+
(
F̄σ (·, X⋆

N )
)2
t⋆

)
.

It then follows due to the Minkowski’s inequality that∥∥∥(Pr
µ3

)
t⋆

∥∥∥π0
⋆

2p
≤ 1

2

√
n

2
∆g∆∂2V

(
Eπ0

⋆

[(
Fσ (·, XN )

)4p
t⋆

] 1
2p

+ Eπ0
⋆

[(
F̄σ (·, X⋆

N )
)4p
t⋆

] 1
2p

)
.

Using the decomposition Fσ = F̄σ + Λσ in (4) followed by the Minkowski’s inequality, we obtain∥∥∥(Pr
µ3

)
t⋆

∥∥∥π0
⋆

2p

≤ 1

2

√
n

2
∆g∆∂2V

(
Eπ0

⋆

[(
F̄σ (·, Xr

N )
)4p
t⋆

] 1
2p

+ Eπ0
⋆

[(
F̄σ (·, X⋆

N )
)4p
t⋆

] 1
2p

+ Eπ0
⋆

[(
Λσ (·, Xr

N )
)4p
t⋆

] 1
2p

)
. (C.24)

Adding the bounds in (C.20), (C.21), and (C.24), establishes (C.19a).

Next, using the definitions of Pr
σ and Pr

σ⋆
, we obtain

∥Pr
σ(t)∥F ≤

√
n

2
∆g∆∂V

∥∥Fσ

(
t,Xr

N,t

)∥∥
F
,
∥∥Pr

σ⋆
(t)
∥∥
F
≤
√
n

2
∆g∆∂V

∥∥F̄σ

(
t,X⋆

N,t

)∥∥
F
, ∀t ∈ [0, T ],

where we have used the bound on g(t) in Assumption 1, and the shared bound on ∥Vr,r (YN,t)∥F and ∥V⋆,r (YN,t)∥F
in (E.1b), Proposition E.1. It then follows from the decomposition Fσ = F̄σ + Λσ in (4) that

∥Pr
σ(t)∥F ≤

√
n

2
∆g∆∂V

(∥∥F̄σ

(
t,Xr

N,t

)∥∥
F
+
∥∥Λσ

(
t,Xr

N,t

)∥∥
F

)
,
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∥∥Pr
σ⋆
(t)
∥∥
F
≤
√
n

2
∆g∆∂V

∥∥F̄σ

(
t,X⋆

N,t

)∥∥
F
, ∀t ∈ [0, T ],

and hence,(
Pr
σ

)
t⋆

≤
√
n

2
∆g∆∂V

((
F̄σ (·, Xr

N )
)
t⋆
+
(
Λσ (·, Xr

N )
)
t⋆

)
,
(
Pr
σ⋆

)
t⋆

≤
√
n

2
∆g∆∂V

(
F̄σ (·, X⋆

N )
)
t⋆
.

Applying the Minkowski’s inequality for q ∈ {2p, 4p}∥∥∥(Pr
σ

)
t⋆

∥∥∥π0
⋆

q
≤
√
n

2
∆g∆∂V

(∥∥∥(F̄σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

q
+
∥∥∥(Λσ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

q

)
,∥∥∥(Pr

σ⋆

)
t⋆

∥∥∥π0
⋆

q
≤
√
n

2
∆g∆∂V

∥∥∥(F̄σ (·, X⋆
N )
)
t⋆

∥∥∥π0
⋆

q
.

Therefore, we conclude that∑
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,

for q ∈ {2p, 4p}, thus establishing (C.19b) and concluding the proof.

Next, we provide a result that is essential to the proof of the main results of the section.
Proposition C.5 Consider the following scalar processes:

Nr
1 (t) =

∫ t

0

eωνMµ(t, ν)Λ
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ν,Xr

N,ν

)
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dWν ,

Nr
3 (t) =

∫ t

0

eωνMσ(t, ν)Λ
∥
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(
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N,ν

)
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4 (t) =
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∥
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)
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(C.25)

where

Mµ(t, ν) =

3∑
i=1

∫ t

ν

e(2λ−ω)βPr
µi
(β)⊤dβ, Mσ(t, ν) =

∫ t

ν

e(2λ−ω)β
[
Pr
σ(β)dWβ + Pr

σ⋆
(β)dW ⋆

β

]⊤
,

for 0 ≤ ν ≤ t ≤ T , and where where Pr
µi
(β) ∈ Rm, i ∈ {1, 2, 3}, and Pr

σ(β), Pr
σ⋆
(β) ∈ Rm×d are defined in the

statement of Proposition C.3.

If the stopping time τ⋆, defined in (29), Lemma 3.1, satisfies τ⋆ = t⋆, then we have the following bound for all
p ∈ N≥1:

4∑
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, (C.26)

where

∆r
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 .

Proof. We begin with the process Nr
1 and use the definition of Mµ to obtain
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(
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which can be further bounded as(

Nr
1

)
t⋆

≤
3∑

i=1

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

eων

∫ t

ν

e(2λ−ω)β
[
Pr
µi
(β)
]⊤
dβΛ

∥
µ

(
ν,Xr

N,ν

)
dν

∣∣∣∣
≤

3∑
i=1

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

eων

∫ t

ν

e(2λ−ω)βdβdν

∣∣∣∣ (Pr
µi

)
t⋆

(
Λ
∥
µ (·, Xr

N )
)
t⋆
.

Solving the integrals in the above expression yields(
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where we have used the following to obtain the last inequality:
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Using Minkowski’s inequality one sees that∥∥∥(Nr
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, (C.27)

where (i) is a consequence of the fact that t⋆ is a constant, and (ii) is due to the Cauchy-Schwarz inequality.

Next, from the definitions of Mµ(t, ν) and Nr
2 we obtain
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2 (t) =
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where recall from Definition 6 that Ŵt =
[
(Wt)

⊤
(W ⋆

t )
⊤]⊤ ∈ R2d. Using the definition of Pr

µi
in Proposi-

tion C.3, and the regularity assumptions in Sec. 2.2, it is straightforward to show that Pr
µi

∈ Mloc
2 (Rm|Wt ×W⋆

t )
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and
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)
. Therefore, we may apply Lemma B.1 to the right hand side

of the previous expression and obtain
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Note that Nr
2 (t) can be cast in the form of the process N(t) in Lemma B.3 by setting
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where the last inequality is due to Jensen’s inequality.

Next, we consider the process Nr
3 (t) given by
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Using Lemma B.1, one sees that
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Note that Nr
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where the last inequality follows from the Minkowski’s inequality subsequent to the following manipulations using
the definition of the Frobenius norm that∥∥[Pr
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Finally, consider the process Nr
4 (t) given as
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dŴβ

)⊤ [
F ∥
σ

(
ν,Xr

N,ν

)
0m,d

]
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which can be cast in the form of the process Ñ(t) in Lemma B.6 by choosing
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It then follows from Lemma B.6 that∥∥∥(Nr
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Using (C.30) on the first term on the right hand side produces∥∥∥(Nr
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Using the Minkowski’s inequality then leads to∥∥∥(Nr
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. (C.31)

The bound in (C.26) is then established by adding together (C.27), (C.28), (C.29), and (C.31)

Similar to the last proposition, the following result establishes the bound on the input to the reference system.
Proposition C.6 Consider the following scalar process:

Nr
U (t) =

∫ t

0

eωνMU (t, ν)
(
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

)
, (C.32)

where

MU (t, ν) =

∫ t
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e(2λ−ω)βPr
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⊤dβ,

for 0 ≤ ν ≤ t ≤ T , and where where Pr
U (β) ∈ Rm is defined in the statement of Proposition C.3.

If the stopping time τ⋆, defined in (29), Lemma 3.1, satisfies τ⋆ = t⋆, then we have the following bound for all
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Proof. We begin by decomposing the process Nr
U1
(t) as follows:
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U (t) = Nr
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(t) +Nr
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(t), (C.34)

where
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Since the integral above is a nested Lebesgue integral with t-continuous integrands, we may change the order of
integration as follows:
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where in the last integral we have switched between the variables β and ν.

Next, consider the process Nr
U2
(t), which, using the definition of MU can be written as
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))
dβdWν

=

∫ t

0

∫ t

ν

(
e(2λ−ω)βPr

U (β)
⊤
) (
eων

[
F ∥
σ

(
ν,Xr

N,ν

)
0m,d

])
dβdŴν ,

where once again recall from Definition 6 that Ŵt =
[
(Wt)

⊤
(W ⋆

t )
⊤]⊤ ∈ R2d. Using the definition of P r

U in Propo-
sition C.3, and the regularity assumptions in Sec. 2.2, it is straightforward to show that P r

U ∈ Mloc
2 (Rm|Wt ×W⋆

t )

and
[
F ∥
σ

(
ν,Xr

N,ν

)
0m,d

]
∈ Mloc

2

(
Rm×2d|Wt ×W⋆

t

)
. Therefore, we invoke Lemma B.1 to obtain

Nr
U2
(t) =

∫ t

0

eωνMU (t, ν)F
∥
σ

(
ν,Xr

N,ν

)
dWν

=

∫ t

0

(
e(2λ−ω)νPr

U (ν)
⊤
)∫ ν

0

(
eωβ

[
F ∥
σ

(
β,Xr

N,β

)
0m,d

])
dŴβdν

=

∫ t

0

e(2λ−ω)νPr
U (ν)

⊤
(∫ ν

0

eωβF
∥
σ

(
β,Xr

N,β

)
dWβ

)
dν. (C.36)

Substituting (C.35) and (C.36) into (C.34) yields

Nr
U (t) =

∫ t

0

e(2λ−ω)νPr
U (ν)

⊤
(∫ ν

0

eωβ
[
Λ
∥
µ

(
β,Xr

N,β

)
dβ + F

∥
σ

(
β,Xr

N,β

)
dWβ

])
dν. (C.37)
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We now obtain the following expression by using the definition of Pr
U in Proposition C.3, followed by the definition

of Ur in (23) for the truncated process (27):

Pr
U (t) =g(t)

⊤Vr,r (YN,t) g(t)U
r
t

=g(t)⊤Vr,r (YN,t) g(t)
(
FωΛ

∥
µ (·, Xr

N )t+ FN ,ωF
∥
σ (·, Xr

N ) ,Wt
)

=g(t)⊤Vr,r (YN,t) g(t)

(
−ω

∫ t

0

e−ω(t−ν)Λ
∥
µ

(
ν,Xr

N,ν

)
dν − ω

∫ t

0

e−ω(t−ν)F
∥
σ

(
ν,Xr

N,ν

)
dWν

)
=− ωe−ωtg(t)⊤Vr,r (YN,t) g(t)

(∫ t

0

eων
[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

])
.

Substituting the above expression into (C.37) produces

Nr
U (t) = −ω

∫ t

0

e2(λ−ω)ν

(∫ ν

0

eωβ
[
Λ
∥
µ

(
β,Xr

N,β

)
dβ + F

∥
σ

(
β,Xr

N,β

)
dWβ

])⊤

g(ν)⊤Vr,r (YN,ν) g(ν)

×
(∫ ν

0

eωβ
[
Λ
∥
µ

(
β,Xr

N,β

)
dβ + F

∥
σ

(
β,Xr

N,β

)
dWβ

])
dν. (C.38)

Observe that Nr
U (t) can be expressed as the process

(
N(t) in the statement of Corollary B.1 by setting

Qt = Ŵt ∈ R2d (nq = 2d), Ft = Wt ×W⋆
t , θ1 = λ, θ2 = ω,

R(t) = −ωg(t)⊤Vr,r (YN,t) g(t) ∈ Mloc
2 (Sm|Wt ×W⋆

t ) , S(t) = Λ
∥
µ

(
t,Xr

N,t

)
∈ Mloc

2 (Rm|Wt ×W⋆
t ) ,

L(t) =
[
F ∥
σ

(
t,Xr

N,t

)
0m,d

]
∈ Mloc

2

(
Rm×2d|Wt ×W⋆

t

)
.

Furthermore, as a consequence of Assumption 1 and (E.1b) in Proposition E.1, we may set ∆R in the hypothesis of
Corollary B.1 as

∆R =

√
n

2
∆2

g∆∂V ω.

Hence, the proof is concluded by applying Corollary B.1 to the processNr
U (t) in (C.38), thereby producing the desired

result in (C.33).

The next lemma establishes the bound on Ξr.
Lemma C.1 If the stopping time τ⋆, defined in (29), Lemma 3.1, satisfies τ⋆ = t⋆, then the term Ξr (τ(t), YN ) defined
in (31), Lemma 3.1, satisfies the following bound for all p ∈ N≥1:∥∥∥(Ξr (·, YN )

)
t⋆

∥∥∥π0
⋆

p
≤ e2λt

⋆

(
∆r

Ξ1

λ
+

∆r
Ξ2√
λ

)
, (C.39)

where

∆r
Ξ1

=
∆g

2

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(Λ⊥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
+

1

4

∥∥∥(Tr
[
Hσ (·, YN )∇2V (YN )

])
t⋆

∥∥∥π0
⋆

p
,

∆r
Ξ2

= 2∆⊥
g

√
p
∥∥∥(Vr (YN )

)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F⊥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
+ 2

√
p
∥∥∥(V⋆ (YN )

)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F̄σ (·, X⋆
N )
)
t⋆

∥∥∥π0
⋆

2p
.

Proof. We begin by writing

Ξr (τ(t), YN ) =

∫ τ(t)

0

e2λνϕrµ (ν, YN,ν) dν +

∫ τ(t)

0

e2λν
[
ϕrσ (ν, YN,ν) ϕrσ⋆

(ν, YN,ν)
]
dŴν ,

and thus(
Ξr (·, YN )

)
t⋆

≤ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνϕrµ (ν, YN,ν) dν

∣∣∣∣+ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λν
[
ϕrσ (ν, YN,ν) ϕrσ⋆

(ν, YN,ν)
]
dŴν

∣∣∣∣ .
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Using the Minkowski’s inequality one sees that

∥∥∥(Ξr (·, YN )
)
t⋆

∥∥∥π0
⋆

p
≤

∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνϕrµ (ν, YN,ν) dν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

+

∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λν
[
ϕrσ (ν, YN,ν) ϕrσ⋆

(ν, YN,ν)
]
dŴν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

. (C.40)

Using the definition of ϕrµ in (32), we obtain∫ t

0

e2λνϕrµ (ν, YN,ν) dν

=

∫ t

0

e2λν
(
Vr (YN,ν)

⊤
g(ν)⊥Λ⊥

µ

(
ν,Xr

N,t

)
+

1

2
Tr
[
Hσ (ν, YN,ν)∇2V (YN,ν)

])
dν,

which implies that∫ t

0

e2λνϕrµ (ν, YN,ν) dν

≤
∫ t

0

e2λν
(
∥Vr (YN,ν)∥ ∥g(ν)∥F

∥∥Λ⊥
µ

(
ν,Xr

N,t

)∥∥+ 1

2

∣∣Tr
[
Hσ (ν, YN,ν)∇2V (YN,ν)

]∣∣) dν
≤
∫ t

0

e2λν
(
∥Vr (YN,ν)∥∆g

∥∥Λ⊥
µ

(
ν,Xr

N,t

)∥∥+ 1

2

∣∣Tr
[
Hσ (ν, YN,ν)∇2V (YN,ν)

]∣∣) dν,
where we have used the bound on g(t) from Assumption 1. We develop this bound further as follows∫ t

0

e2λνϕrµ (ν, YN,ν) dν

≤
(∫ t

0

e2λνdν

)(
∆g

(
Vr (YN )

)
t

(
Λ⊥
µ (·, Xr

N )
)
t
+

1

2

(
Tr
[
Hσ (·, YN )∇2V (YN )

])
t

)
≤ e2λt

2λ

(
∆g

(
Vr (YN )

)
t

(
Λ⊥
µ (·, Xr

N )
)
t
+

1

2

(
Tr
[
Hσ (·, YN )∇2V (YN )

])
t

)
,

where in the last inequality we have used the strict positivity of λ ∈ R>0. Hence,

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνϕrµ (ν, YN,ν) dν

∣∣∣∣
≤ e2λt

⋆

2λ

(
∆g

(
Vr (YN )

)
t⋆

(
Λ⊥
µ (·, Xr

N )
)
t⋆
+

1

2

(
Tr
[
Hσ (·, YN )∇2V (YN )

])
t⋆

)
.

Since t⋆ is a constant, it then follows that∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνϕrµ (ν, YN,ν) dν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

(i)

≤ e2λt
⋆

2λ

(
∆g

∥∥∥(Vr (YN )
)
t⋆

(
Λ⊥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

p
+

1

2

∥∥∥(Tr
[
Hσ (·, YN )∇2V (YN )

])
t⋆

∥∥∥π0
⋆

p

)
(ii)

≤ e2λt
⋆

2λ

(
∆g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(Λ⊥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
+

1

2

∥∥∥(Tr
[
Hσ (·, YN )∇2V (YN )

])
t⋆

∥∥∥π0
⋆

p

)
, (C.41)

where (i) and (ii) are due to the Minkowski’s and the Cauchy-Schwarz inequalities, respectively.

Next, using the definitions of ϕrσ⋆
and ϕrσ in (32), we obtain∫ t

0

e2λν
[
ϕrσ (ν, YN,ν) ϕrσ⋆

(ν, YN,ν)
]
dŴν
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=

∫ t

0

e2λν
[
Vr (Yν)

⊤
g(ν)⊥F⊥

σ

(
ν,Xr

N,ν

)
V⋆ (Yν)

⊤
F̄σ (ν,X

⋆
ν )
]
dŴν .

The regularity assumptions and the t-continuity of the strong solutions Xr
N,t and X⋆

N,t imply that[
ϕrσ (ν, YN,ν) ϕrσ⋆

(ν, YN,ν)
]
∈ Mloc

2

(
R1×2d|Wt ×W⋆

t

)
. Thus, we may use Proposition B.1 and the strict pos-

itivity of λinR>0 to obtain∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λν
[
ϕrσ (ν, YN,ν) ϕrσ⋆

(ν, YN,ν)
]
dŴν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤
2
√
pe2λt

⋆

√
2λ

∥∥∥( [Vr (YN )
⊤
g⊥F⊥

σ (·, Xr
N ) V⋆ (YN )

⊤
F̄σ (·, X⋆

N )
])

t⋆

∥∥∥π0
⋆

p
. (C.42)

Next, observe that∥∥∥[Vr (YN,t)
⊤
g(t)⊥F⊥

σ

(
t,Xr

N,t

)
V⋆ (YN,t)

⊤
F̄σ (t,X

⋆
t )
]∥∥∥

=

(∥∥∥Vr (YN,t)
⊤
g(t)⊥F⊥

σ

(
t,Xr

N,t

)∥∥∥2 + ∥∥∥V⋆ (YN,t)
⊤
F̄σ (t,X

⋆
t )
∥∥∥2) 1

2

≤
√
2
(∥∥∥Vr (YN,t)

⊤
g(t)⊥F⊥

σ

(
t,Xr

N,t

)∥∥∥+ ∥∥∥V⋆ (YN,t)
⊤
F̄σ (t,X

⋆
t )
∥∥∥) ,

and thus( [
Vr (YN )

⊤
g⊥F⊥

σ (·, Xr
N ) V⋆ (YN )

⊤
F̄σ (·, X⋆

N )
])

t⋆

.
= sup

t∈[0,t⋆]

∥∥∥[Vr (YN,t)
⊤
g(t)⊥F⊥

σ

(
t,Xr

N,t

)
V⋆ (YN,t)

⊤
F̄σ (t,X

⋆
t )
]∥∥∥

≤ sup
t∈[0,t⋆]

√
2
(∥∥∥Vr (YN,t)

⊤
g(t)⊥F⊥

σ

(
t,Xr

N,t

)∥∥∥+ ∥∥∥V⋆ (YN,t)
⊤
F̄σ (t,X

⋆
t )
∥∥∥) .

Hence,( [
Vr (YN )

⊤
g⊥F⊥

σ (·, Xr
N ) V⋆ (YN )

⊤
F̄σ (·, X⋆

N )
])

t⋆

≤
√
2

(
sup

t∈[0,t⋆]

∥∥∥Vr (YN,t)
⊤
g(t)⊥F⊥

σ

(
t,Xr

N,t

)∥∥∥+ sup
t∈[0,t⋆]

∥∥∥V⋆ (YN,t)
⊤
F̄σ

(
t,X⋆

N,t

)∥∥∥)

≤
√
2

(
∆⊥

g sup
t∈[0,t⋆]

∥Vr (YN,t)∥ sup
t∈[0,t⋆]

∥∥F⊥
σ

(
t,Xr

N,t

)∥∥+ sup
t∈[0,t⋆]

∥V⋆ (YN,t)∥ sup
t∈[0,t⋆]

∥∥F̄σ

(
t,X⋆

N,t

)∥∥) ,
where we have used the bound on g(t)⊥ from Assumption 1. It then follows from the definition of

(
·
)
t⋆

that( [
Vr (YN )

⊤
g⊥F⊥

σ (·, Xr
N ) V⋆ (YN )

⊤
F̄σ (·, X⋆

N )
])

t⋆

≤
√
2
(
∆⊥

g

(
Vr (YN )

)
t⋆

(
F⊥
σ (·, Xr

N )
)
t⋆
+
(
V⋆ (YN )

)
t⋆

(
F̄σ (·, X⋆

N )
)
t⋆

)
.

Using the Minkowski’s inequality, one sees that∥∥∥( [Vr (YN )
⊤
g⊥F⊥

σ (·, Xr
N ) V⋆ (YN )

⊤
F̄σ (·, X⋆

N )
])

t⋆

∥∥∥π0
⋆

p

≤
√
2

(
∆⊥

g

∥∥∥(Vr (YN )
)
t⋆

(
F⊥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

p
+
∥∥∥(V⋆ (YN )

)
t⋆

(
F̄σ (·, X⋆

N )
)
t⋆

∥∥∥π0
⋆

p

)
≤

√
2

(
∆⊥

g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F⊥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(V⋆ (YN )

)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F̄σ (·, X⋆
N )
)
t⋆

∥∥∥π0
⋆

2p

)
,

where the last inequality is due to the Cauchy-Schwarz inequality. Substituting the above into (C.42) yields
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∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λν
[
ϕrσ (ν, YN,ν) ϕrσ⋆

(ν, YN,ν)
]
dŴν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤
2
√
pe2λt

⋆

√
λ

(
∆⊥

g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F⊥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(V⋆ (YN )

)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F̄σ (·, X⋆
N )
)
t⋆

∥∥∥π0
⋆

2p

)
. (C.43)

Substituting (C.41) and (C.43) into (C.40) and re-arranging terms leads to (C.39), thus concluding the proof.

We next derive the bound on Ξr
U in the following lemma.

Lemma C.2 If the stopping time τ⋆, defined in (29), Lemma 3.1, satisfies τ⋆ = t⋆, then the term Ξr
U (τ(t), YN ;ω)

defined in (31), Lemma 3.1, satisfies the following bound for all p ∈ N≥1:∥∥∥(Ξr
U (·, YN ;ω)

)
t⋆

∥∥∥π0
⋆

p
≤ e(2λ+ω)t⋆

|2λ− ω|
(
∆r

U1
+

√
ω∆r

U2
+ ω∆r

U3

)
, (C.44)

where

∆r
U1

=

(
∆r

P1
(t⋆)

√
λ

+ 2∆g

(
1 +

√
2λp

)∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

)∥∥∥(Λ∥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p

+2∆g

√
2λp

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F ∥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p

+

√
n

2

p∆2
g∆∂V

λ
Eπ0

⋆

[(
Λ
∥
µ (·, Xr

N )
)2p
t⋆

] 1
p

,

∆r
U2

=

(
∆r

P2
(t⋆)

√
λ

+ 2∆gm
√
2p
∥∥∥(Vr (YN )

)
t⋆

∥∥∥π0
⋆

2p

)∥∥∥(F ∥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

4p
,

∆r
U3

=

√
m

2λ

∥∥∥(Pr
σF

∥
σ (·, Xr

N )
⊤
)
t⋆

∥∥∥π0
⋆

p
+

√
n

2

p2(2p− 1)∆2
g∆∂V

2λ
Eπ0

⋆

[(
F

∥
σ (·, Xr

N )
)2p
t⋆

] 1
p

,

and where the function Pr
σ(t), and the constants ∆r

P1
(t⋆) and ∆r

P2
(t⋆), are defined in the statements of Proposi-

tions C.3 and C.5, respectively.

Proof. We begin by recalling the definition of ψr(τ(t), ν, YN ) from (33)

ψr(τ(t), ν, YN ) =
ω

2λ− ω

(
eω(τ(t)+ν)Pr (τ(t), ν)− e(2λτ(t)+ων)Vr

(
YN,τ(t)

)⊤
g(τ(t))

)
+

2λ

2λ− ω
e(ωτ(t)+2λν)Vr (YN,ν)

⊤
g(ν),

which, upon using the decomposition (C.14) in Proposition C.3, can be re-written as

ψr(τ(t), ν, YN ) =
ω

2λ− ω

(
eω(τ(t)+ν)Pr

◦ (τ(t), ν)− e(2λτ(t)+ων)Vr
(
YN,τ(t)

)⊤
g(τ(t))

)
+

ω

2λ− ω
eω(τ(t)+ν)Pr

ad (τ(t), ν) +
2λ

2λ− ω
e(ωτ(t)+2λν)Vr (YN,ν)

⊤
g(ν),

We thus decompose ψr(τ(t), ν, YN ) in (33) as follows:

ψr(τ(t), ν, YN ) =

3∑
i=1

ψr
i (τ(t), ν, YN ) + ψr

ad(τ(t), ν, YN ) ∈ R1×m, (C.45)

where

ψr
1(τ(t), ν, YN ) =

ω

2λ− ω
eω(τ(t)+ν)Pr

◦ (τ(t), ν) ,

ψr
2(τ(t), ν, YN ) = − ω

2λ− ω
e(2λτ(t)+ων)Vr

(
YN,τ(t)

)⊤
g(τ(t)),
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ψr
3(τ(t), ν, YN ) =

2λ

2λ− ω
e(ωτ(t)+2λν)Vr (YN,ν)

⊤
g(ν),

and

ψr
ad(τ(t), ν, YN ) =

ω

2λ− ω
eω(τ(t)+ν)Pr

ad (τ(t), ν) .

Next, using the definitions of Ur
µ (τ(t), ν, YN ;ω) and Ur

σ (τ(t), ν, YN ;ω) in (32), the decomposition in (C.45) pro-
duces the following expression:

Ur
µ (τ(t), ν, YN ;ω) =

(
3∑

i=1

ψr
i (τ(t), ν, YN ) + ψr

ad(τ(t), ν, YN )

)
Λ
∥
µ

(
ν,Xr

N,ν

)
∈ R,

Ur
σ (τ(t), ν, YN ;ω) =

(
3∑

i=1

ψr
i (τ(t), ν, YN ) + ψr

ad(τ(t), ν, YN )

)
F

∥
σ

(
ν,Xr

N,ν

)
∈ R1×d.

Then, we may re-write Ξr
U (τ(t), YN ;ω) in (31) as

Ξr
U (τ(t), YN ;ω) =

∫ τ(t)

0

(
Ur
µ (τ(t), ν, YN ;ω) dν + Ur

σ (τ(t), ν, YN ;ω) dWν

)
=

3∑
i=1

∫ τ(t)

0

ψr
i (τ(t), ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]
+

∫ τ(t)

0

ψr
ad(τ(t), ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]
,

and thus(
Ξr
U (·, YN ;ω)

)
t⋆

≤
3∑

i=1

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
i (t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
+ sup

t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
ad(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣ .
Applying the Minkowski’s inequality produces the following bound:∥∥∥(Ξr

U (·, YN ;ω)
)
t⋆

∥∥∥π0
⋆

p

≤
3∑

i=1

∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
i (t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

+

∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
ad(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

. (C.46)

Next, using the definition of ψr
1 in (C.45) produces

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
1(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
≤ ω

|2λ− ω|
sup

t∈[0,t⋆]

∣∣∣∣eωt

∫ t

0

eωνPr
◦ (t, ν)

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
≤ ωeωt⋆

|2λ− ω|
sup

t∈[0,t⋆]

∣∣∣∣∫ t

0

eωνPr
◦ (t, ν)

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣ .
Since t⋆ is a constant, we conclude that
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∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
1(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤ ωeωt⋆

|2λ− ω|

∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

eωνPr
◦ (t, ν)

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

. (C.47)

Using the definition of Pr
◦ in (C.15a), one sees that∫ t

0

eωνPr
◦ (t, ν)

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]
=

4∑
i=1

Nr
i (t), ∀t ∈ [0, T ],

where the processes Nr
i (t), i ∈ {1, · · · , 4}, are defined in (C.25) in the statement of Proposition C.5. Hence,∥∥∥∥∥ sup

t∈[0,t⋆]

∣∣∣∣∫ t

0

eωνPr
◦ (t, ν)

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤
4∑

i=1

∥∥∥(Nr
i

)
t⋆

∥∥∥π0
⋆

p
,

thus allowing us to write (C.47) as∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
1(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤ ωeωt⋆

|2λ− ω|

4∑
i=1

∥∥∥(Nr
i

)
t⋆

∥∥∥π0
⋆

p
.

It then follows from Proposition C.5 that∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
1(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤ e(2λ+ω)t⋆

√
λ |2λ− ω|

∆r
P1

(t⋆)
∥∥∥(Λ∥

µ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

2p
+

√
ωe(2λ+ω)t⋆

√
λ |2λ− ω|

∆r
P2

(t⋆)
∥∥∥(F ∥

σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

4p

+
ω
√
me(2λ+ω)t⋆

2λ |2λ− ω|

∥∥∥(Pr
σF

∥
σ (·, Xr

N )
⊤
)
t⋆

∥∥∥π0
⋆

p
. (C.48)

Next, using the definition of ψr
2 in (C.45) we see that

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
2(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
≤ ωe2λt

⋆

|2λ− ω|
sup

t∈[0,t⋆]

∣∣∣∣∫ t

0

eωνVr
(
YN,τ(t)

)⊤
g(τ(t))

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
≤ ωe2λt

⋆

|2λ− ω|
∆g

(
Vr (YN )

)
t⋆

sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eων
[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∥∥∥∥ ,
where we have used the bound on g(t) from Assumption 1. Developing the bound further leads to

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
2(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
≤ ωe2λt

⋆

|2λ− ω|
∆g

(
Vr (YN )

)
t⋆

(
sup

t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνΛ
∥
µ

(
ν,Xr

N,ν

)
dν

∥∥∥∥+ sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνF
∥
σ

(
ν,Xr

N,ν

)
dWν

∥∥∥∥
)
.

Using the Cauchy-Schwarz inequality one sees that∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
2(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p
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≤ ωe2λt
⋆

|2λ− ω|
∆g

∥∥∥∥∥(Vr (YN )
)
t⋆

(
sup

t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνΛ
∥
µ

(
ν,Xr

N,ν

)
dν

∥∥∥∥+ sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνF
∥
σ

(
ν,Xr

N,ν

)
dWν

∥∥∥∥
)∥∥∥∥∥

π0
⋆

p

≤ ωe2λt
⋆

|2λ− ω|
∆g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥∥∥
(

sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνΛ
∥
µ

(
ν,Xr

N,ν

)
dν

∥∥∥∥
+ sup

t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνF
∥
σ

(
ν,Xr

N,ν

)
dWν

∥∥∥∥
)∥∥∥∥∥

π0
⋆

2p

.

It then follows from the Minkowski’s inequality that∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
2(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤ ωe2λt
⋆

|2λ− ω|
∆g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥∥∥ sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνΛ
∥
µ

(
ν,Xr

N,ν

)
dν

∥∥∥∥
∥∥∥∥∥
π0
⋆

2p

+

∥∥∥∥∥ sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνF
∥
σ

(
ν,Xr

N,ν

)
dWν

∥∥∥∥
∥∥∥∥∥
π0
⋆

2p

 . (C.49)

Now,∥∥∥∥∫ t

0

eωνΛ
∥
µ

(
ν,Xr

N,ν

)
dν

∥∥∥∥ ≤
∫ t

0

eων
∥∥Λ∥

µ

(
ν,Xr

N,ν

)∥∥ dν ≤
(∫ t

0

eωνdν

)(
Λ
∥
µ (·, Xr

N )
)
t
≤ eωt

ω

(
Λ
∥
µ (·, Xr

N )
)
t
,

where, in the last inequality, we have used the fact the strict positivity of ω ∈ R>0. Therefore,

sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνΛ
∥
µ

(
ν,Xr

N,ν

)
dν

∥∥∥∥ ≤ eωt⋆

ω

(
Λ
∥
µ (·, Xr

N )
)
t⋆
.

Since t⋆ is a constant, it then follows that∥∥∥∥∥ sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνΛ
∥
µ

(
ν,Xr

N,ν

)
dν

∥∥∥∥
∥∥∥∥∥
π0
⋆

2p

≤ eωt⋆

ω

∥∥∥(Λ∥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
. (C.50)

Next, observe that the regularity assumptions, along with the t-continuity of the strong solution Xr
N,t, it is straight-

forward to establish that F ∥
σ (·, Xr

N ) ∈ Mloc
2

(
Rm×d|Wt

)
. Therefore, we may use Proposition B.1 and the strict

positivity of ω ∈ R>0 to obtain the following bound:∥∥∥∥∥ sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνF
∥
σ

(
ν,Xr

N,ν

)
dWν

∥∥∥∥
∥∥∥∥∥
π0
⋆

2p

≤ 2
√
2m

√
p

(
e2ωt⋆ − 1

ω

) 1
2 ∥∥∥(F ∥

σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

2p

≤
2
√
2m

√
peωt⋆

√
ω

∥∥∥(F ∥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
.

Using Jensen’s inequality one sees that∥∥∥∥∥ sup
t∈[0,t⋆]

∥∥∥∥∫ t

0

eωνF
∥
σ

(
ν,Xr

N,ν

)
dWν

∥∥∥∥
∥∥∥∥∥
π0
⋆

2p

≤ 2
√
2m

√
p

(
e2ωt⋆ − 1

ω

) 1
2 ∥∥∥(F ∥

σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

2p

≤
2
√
2m

√
peωt⋆

√
ω

∥∥∥(F ∥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

4p
. (C.51)

Substituting (C.50) and (C.51) into (C.49) produces
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∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
2(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤ e(2λ+ω)t⋆

|2λ− ω|
∆g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(Λ∥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p

+

√
ωe(2λ+ω)t⋆

|2λ− ω|
2
√
2m

√
p∆g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(F ∥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

4p
. (C.52)

Next, using the definition of ψr
3 in (C.45) we see that

sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
3(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
≤ 2λeωt⋆

|2λ− ω|
sup

t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνVr (YN,ν)
⊤
g(ν)

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣ .
Applying the Minkowski’s inequality then leads to∥∥∥∥∥ sup

t∈[0,t⋆]

∣∣∣∣∫ t

0

ψr
3(t, ν, YN )

[
Λ
∥
µ

(
ν,Xr

N,ν

)
dν + F

∥
σ

(
ν,Xr

N,ν

)
dWν

]∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤ 2λeωt⋆

|2λ− ω|

∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνVr (YN,ν)
⊤
g(ν)Λ

∥
µ

(
ν,Xr

N,ν

)
dν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

+
2λeωt⋆

|2λ− ω|

∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνVr (YN,ν)
⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
dWν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

. (C.53)

Upon performing similar manipulations to (C.50) and applying the Cauchy-Schwarz inequality, we obtain the follow-
ing bound:∥∥∥∥∥ sup

t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνVr (YN,ν)
⊤
g(ν)Λ

∥
µ

(
ν,Xr

N,ν

)
dν

∣∣∣∣
∥∥∥∥∥
π0
⋆

p

≤ e2λt
⋆

2λ
∆g

∥∥∥(Vr (YN )
)
t⋆

(
Λ
∥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

p

≤ e2λt
⋆

2λ
∆g

∥∥∥(Vr (YN )
)
t⋆

∥∥∥π0
⋆

2p

∥∥∥(Λ∥
µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
. (C.54)

Next, we may write∫ t

0

e2λνVr (YN,ν)
⊤
g(ν)F

∥
σ

(
ν,Xr

N,ν

)
dWν =

∫ t

0

e2λνVr (YN,ν)
⊤
g(ν)

[
F ∥
σ

(
ν,Xr

N,ν

)
0m,d

]
dŴν .

Furthermore, the regularity assumptions and the t-continuity of the strong solutions Xr
N,t and X⋆

N,t imply that(
Vr (YN,t)

⊤
g(t)

[
F ∥
σ

(
t,Xr

N,t

)
0m,d

])
∈ Mloc

2

(
R1×2d|Wt ×W⋆

t

)
. Thus, we may use Proposition B.1 and the

strict positivity of λ ∈ R>0 to obtain the following bound:∥∥∥∥∥ sup
t∈[0,t⋆]

∣∣∣∣∫ t

0

e2λνVr (YN,ν)
⊤
g(ν)F

∥
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where the last inequality follows from the Cauchy-Schwarz inequality. Substituting (C.54) and (C.55) into (C.53)
produces∥∥∥∥∥ sup
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Finally, using the definition of ψr
ad in (C.45) we see that
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where, in the last expression we have used the definition of Pr
ad in (C.15b), Proposition C.3. Observe that the last

inequality can be expressed as∥∥∥∥∥ sup
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where the process Nr
U is defined in (C.32), Proposition C.6. Thus, we invoke Proposition C.6 and obtain∥∥∥∥∥ sup
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.

It then follows from [110, Prop. 3.1.10-(iii)] that
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∥∥∥∥∥ sup
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To conclude the proof we substitute the bounds in (C.48), (C.52), (C.56), and (C.57) into (C.46) and obtain the desired
bound in (C.44) upon grouping terms that are ∝

{
ω,

√
ω, 1

}
/ |2λ− ω|.

Next, we derive the expressions for the terms that constitute the bound in Proposition C.5.
Proposition C.7 Suppose there exists a strictly positive ϱ ∈ R>0 such that
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, (C.58)

where the constant t⋆ is defined in (29) and p⋆ is defined in Assumption 3. Then, the following bound holds ∀N≥1 ∋
p ≤ p⋆:
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1 +∆ġ ∥∇V (0, 0)∥

)
+
√
2np∆g∆∂V ∆̂

r
2

+
√
2np∆g∆∂V ∆σ

√
ϱ+

∆̂r
3

2
√
λ
ϱ, (C.59a)
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where ∆r
P1

(t⋆) and ∆r
P2

(t⋆) are defined in the statement of Proposition C.5, Pr
σ is defined in Proposition C.3, and

where the constants ∆̂r
1, ∆̂r

2, ∆̂r
3, ∆̂r

4, and ∆̂r
4∥ , are defined in (A.1), Appendix A.

Proof. We begin with the term ∆r
Pµ

defined in Proposition C.4 which is defined as
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.

Using the bounds (E.4b) and (E.4c) in Proposition E.2, we obtain

∆r
Pµ

≤ (2∆f +∆µ) (1 + ∆⋆) + (∆f +∆µ)ϱ. (C.60)

Next, we consider the term ∆r
Pσ

(r, s), (r, s) ∈ {2p, 4p} × {2p, 4p}, defined in Proposition C.4 and use the bounds
in (E.5c) and (E.5e), to obtain
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where (⋆) is due to [110, Prop. 3.1.10-(iii)]. Next, recall (C.19a) in the statement of Proposition C.4:
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Using (C.60), (C.61a), and (E.3) in Proposition E.2, one sees that
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Similarly, from (C.19a) and (C.61b), we obtain∑
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Now, recall the definition of ∆r
P1

(t⋆) from the statement of Proposition C.5:
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which then leads to (C.59a) by using the bounds in (C.62) - (C.63).

Next, recall the definition of ∆r
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(t⋆):
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which yields (C.59b) upon substitution of the bounds in (C.62) - (C.63).

Finally, the definition of Pr
σ in Proposition C.3 and the submultiplicativity of the Frobenius norm imply that∥∥∥Pr
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and thus, using the bounds on g(t) and Vr,r (YN,t) in Assumption 1 and (E.1b), respectively, produces∥∥∥Pr
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It then follows from the Cauchy-Schwarz inequality that∥∥∥(Pr
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The proof is then concluded by observing that one obtains (C.59c) by substituting the bound (E.5b) into the inequality
above.

The following result derives the joint effect of the bounds in Lemmas C.1 and C.2.
Lemma C.3 Consider the the stopping times τ⋆ and t⋆ defined in (29), Lemma 3.1.and assume that τ⋆ = t⋆. Further-
more, suppose there exists a strictly positive ϱ ∈ R>0 such that
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where p⋆ is defined in Assumption 3. Then, the following bound holds ∀N≥1 ∋ p ≤ p⋆:∥∥∥eωτ⋆
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where
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and where the constants ∆r
i , i ∈ {◦1, . . . , ◦5,⊚1, . . . ,⊚4,⊙1, . . . ,⊙5,⊗1, . . . ,⊗3,⊛1,⊛2}, are defined in (A.2) -

(A.6) in Appendix A.

Proof. Since τ⋆ = t⋆, we use Lemmas C.1 and C.2, and the fact that t⋆ is a constant, to see that∥∥∥eωτ⋆
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Now, recall the definitions of ∆r
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and ∆r
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in Lemma C.1:
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It then follows from the bounds (E.3), (E.4b), (E.5b), (E.5d) and (E.5e), in Proposition E.2, that
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and
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Next, recall the term ∆r
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in Lemma C.2:
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∥∥∥(F ∥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p

+

√
n

2

p∆2
g∆∂V

λ
Eπ0

⋆

[(
Λ
∥
µ (·, Xr

N )
)2p
t⋆

] 1
p

.

Using (C.59a) in Proposition C.7, and the bounds (E.3), (E.4a), (E.4b), and (E.5b) in Proposition E.2, we obtain:

∆r
U1

≤ ∆r
◦3

+∆r
⊚2

√
ϱ+∆r

⊙3
ϱ+∆r

⊗2
ϱ
√
ϱ+∆r

⊛2
ϱ2. (C.69)
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Next, recall the term ∆r
U2

in Lemma C.2:

∆r
U2

=

(
∆r

P2
(t⋆)

√
λ

+ 2∆gm
√
2p
∥∥∥(Vr (YN )

)
t⋆

∥∥∥π0
⋆

2p

)∥∥∥(F ∥
σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

4p
,

which, upon using (C.59b) in Proposition C.7, and the bounds (E.3) and (E.5b) in Proposition E.2, produces:

∆r
U2

≤ ∆r
◦4

+∆r
⊚3

√
ϱ+∆r

⊙4
ϱ+∆r

⊗3
ϱ
√
ϱ. (C.70)

Finally, recall the term ∆r
U3

in Lemma C.2:

∆r
U3

=

√
m

2λ

∥∥∥(Pr
σF

∥
σ (·, Xr

N )
⊤
)
t⋆

∥∥∥π0
⋆

p
+

√
n

2

p2(2p− 1)∆2
g∆∂V

2λ
Eπ0

⋆

[(
F

∥
σ (·, Xr

N )
)2p
t⋆

] 1
p

,

which, upon using (C.59c) in Proposition C.7, and the bound (E.5a) in Proposition E.2, yields:

∆r
U3

≤ ∆r
◦5

+∆r
⊚4

√
ϱ+∆r

⊙5
ϱ. (C.71)

The proof is then concluded by substituting (C.67) - (C.71) into (C.66).

D True (Uncertain) Process

We provide the proof of Proposition 3.2 below.

Proof of Proposition 3.2. We consider the case P {ZN,0 = Z0 ∈ UN} = 1 w.l.o.g. since otherwise τN = 0 and the
result is trivial. Furthermore, since Proposition 3.1 establishes the well-posedness of Xr

N,t, we only need to show that
XN,t is a unique strong solution of

dXN,t = FN,µ (t,XN,t, UL1,t) dt+ FN,σ (t,XN,t) dWt, UL1 = FL1 (XN ) , XN,0 = x0 ∼ ξ0, (D.1)

for t ∈ [0, T ], where F̄N,{µ,σ} and FN,{µ,σ} are defined analogously to JN,{µ,σ} in (47).

We begin by defining

N(z(t)) =

∫ t

0

FN,µ (ν, z(ν),FL1 (z) (ν)) dν +

∫ t

0

FN,σ (ν, z(ν)) dWν

=

∫ t

0

(fN (ν, z(ν)) + g(ν)FL1 (z) (ν) + ΛN,µ (ν, z(ν))) dν

+

∫ t

0

(pN (ν, z(ν)) + ΛN,σ (ν, z(ν))) dWν , t ∈ [0, T ], (D.2)

for any z ∈ M2 ([0, τN (T )),Rn |W0,t), where fN , ΛN,µ, pN , and ΛN,σ denote the truncated versions of the func-
tions f , Λµ, p, and Λσ , respectively, and where the truncation is defined as in (45). We now add and subtract Fr (z),
where Fr is defined in (24), to obtain

N(z(t)) =

∫ t

0

(fN (ν, z(ν)) + g(ν) (FL1 (z) (ν)−Fr (z) (ν) + Fr (z) (ν)) + ΛN,µ (ν, z(ν))) dν

+

∫ t

0

(pN (ν, z(ν)) + ΛN,σ (ν, z(ν))) dWν

=

∫ t

0

(fN (ν, z(ν)) + g(ν)Fr (z) (ν) + ΛN,µ (ν, z(ν))) dν

+

∫ t

0

(pN (ν, z(ν)) + ΛN,σ (ν, z(ν))) dWν +

∫ t

0

g(ν) ((FL1
−Fr) (z)) (ν)dν

=

∫ t

0

FN,µ (ν, z(ν),Fr (z) (ν)) dν +

∫ t

0

FN,σ (ν, z(ν)) dWν

+

∫ t

0

g(ν) ((FL1
−Fr) (z)) (ν)dν, t ∈ [0, T ].
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We now use an identical line of reasoning up to (C.6) in the proof of Proposition 3.1 to obtain

N(z(t)) =

∫ t

0

Mµ (t, ν, z(ν)) dν +

∫ t

0

Mσ (t, ν, z(ν)) dWν

+

∫ t

0

g(ν) ((FL1
−Fr) (z)) (ν)dν, t ∈ [0, T ], (D.3)

where M{µ,σ} are defined in (C.6).

Let us now set x0(t) ≡ x0, and defined the Picard iterates for (D.1) as

xk(t) = x0 +

∫ t

0

FN,µ (ν, xk−1(ν),FL1 (xk−1) (ν)) dν +

∫ t

0

FN,σ (ν, xk−1(ν)) dWν , k ∈ N, t ∈ [0, T ].

(D.4)

It then follows from (D.3) that

xk(t) = x0 +

∫ t

0

Mµ (t, ν, xk−1(ν)) dν +

∫ t

0

Mσ (t, ν, xk−1(ν)) dWν

+

∫ t

0

g(ν) ((FL1
−Fr) (xk−1)) (ν)dν, k ∈ N, t ∈ [0, T ]. (D.5)

Next, we formulate the truncations of the feedback operators FL1 and Fr in (17) and (23), respectively, to obtain

((FL1
−Fr) (xk−1)) (t)

= −ω

∫ t

0

e−ω(t−ν)Λ̂
∥
N (ν) dν −Fω

(
Λ
∥
N,µ (·, xk−1)

)
(t)−FN ,ω

(
F

∥
N,σ (·, xk−1) ,W

)
(t)

= ω

∫ t

0

e−ω(t−ν)
(
Λ
∥
N,µ (ν, xk−1(ν)) dν + F

∥
N,σ (ν, xk−1(ν)) dWν − Λ̂

∥
N (ν) dν

)
,

for (k, t) ∈ N× [0, T ]. Writing the expression above in its differential form leads to

dF̂k−1(t) =
(
−ωF̂k−1(t) + Λ

∥
N,µ (t, xk−1(t))− Λ̂

∥
N (t)

)
dt+ F

∥
N,σ (t, xk−1(t)) dWt, (D.6)

where

F̂k−1(0) = 0m, F̂k−1
.
= (FL1

−Fr) (xk−1).

Since the differential equation above is linear in F̂ , its solution for any stopping time τ ∈ [0, T ] can be computed as
(see e.g. [95, Sec. 5.4.2])

F̂k−1(t) = e−ω(t−τ)F̂k−1(τ) + ω

∫ t

0

e−ω(t−ν)
(
Σ

∥
ν − Λ̂

∥
N (ν) dν

)
, (k, t) ∈ N× [τ, T ], (D.7)

where, we have (formally) defined

Σ
∥
t
.
= Λ

∥
N,µ (t, xk−1(t)) dt+ F

∥
N,σ (t, xk−1(t)) dWt, (k, t) ∈ N× [0, T ].

Since the temporal instances iTs, i ∈ N, are constant, and hence stopping times, we may decompose F̂k−1(t) as
follows:

F̂k−1(t) = ω

∫ t

0

e−ω(t−ν)
(
Σ

∥
ν − Λ̂

∥
N (ν) dν

)
, t ∈ [0,Ts), (D.8a)

F̂k−1(t) = e−ω(t−Ts)F̂k−1(Ts) + ω

∫ t

Ts

e−ω(t−ν)
(
Σ

∥
ν − Λ̂

∥
N (ν) dν

)
, t ∈ [Ts, 2Ts), (D.8b)

F̂k−1(t) = e−ω(t−iTs)F̂k−1(iTs) + ω

∫ t

iTs

e−ω(t−ν)
(
Σ

∥
ν − Λ̂

∥
N (ν) dν

)
,

t ∈ [iTs, (i+ 1)Ts), i ∈
{
2, . . . ,

⌊
t/Ts

⌋}
, (k, t) ∈ N× [0, T ].

(D.8c)
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Next, we derive the expression for the truncated adaptive estimate Λ̂∥
N (t). Let x̂k−1 = Fλs (xk−1), where the operator

Fλs is defined in (18c). Since we are considering the truncated vector fields, we define the Picard iterates of x̂ using
the operator Fλs by setting x̂0(t) = 0n and

x̂k(t) =

∫ t

0

(
−λsInx̃k−1(ν) + fN (ν, xk−1(ν)) + g(ν)FL1 (xk−1) (ν) + Λ̂N (ν)

)
dν,

(k, t) ∈ N× [0, T ], x̃
.
= x̂− x.

Since x̃k = x̂k − xk, it follows from (D.4) that

x̃k(t) =

∫ t

0

(
−λsInx̃k−1(ν) + fN (ν, xk−1(ν)) + g(ν)FL1 (xk−1) (ν) + Λ̂N (ν)

)
dν

− x0 −
∫ t

0

FN,µ (ν, xk−1(ν),FL1
(xk−1) (ν)) dν −

∫ t

0

FN,σ (ν, xk−1(ν)) dWν

= −x0 +
∫ t

0

(
−λsInx̃k−1(ν) + Λ̂N (ν)

)
dν −

∫ t

0

Σν , (k, t) ∈ N× [0, T ], (D.9)

where, we have (formally) defined

Σt
.
= ΛN,µ (t, xk−1(t)) dt+ FN,σ (t, xk−1(t)) dWt, (k, t) ∈ N× [0, T ].

As before, since the temporal instances iTs, i ∈ N, are constant, and hence stopping times, we may write

x̃k(t) = −x0 +
∫ Ts

0

(
−λsInx̃k−1(ν) + Λ̂N (ν)

)
dν −

∫ Ts

0

Σν , t ∈ [0,Ts), (D.10a)

x̃k(t) = x̃k(iTs) +

∫ t

iTs

(
−λsInx̃k−1(ν) + Λ̂N (ν)

)
dν −

∫ t

iTs

Σν , t ∈ [iTs, (i+ 1)Ts), (D.10b)

for (k, t) ∈ N× [0, T ] and i ∈
{
1, . . . ,

⌊
t/Ts

⌋}
. Using the definition of the adaptation law in (18b) we have that

Λ̂ (t) = FTs (x̂k−1, xk−1) (t) =0n1{[0,Ts)} (t)

+ λs
(
1− eλsTs

)−1
⌊ t
Ts

⌋∑
i=1

x̃k−1 (iTs)1{[iTs,(i+1)Ts)} (t) , t ∈ [0, T ]. (D.11)

Hence, substituting the above into (D.10) leads to

x̃k(t) = −x0 −
∫ Ts

0

λsInx̃k−1(ν)dν −
∫ Ts

0

Σν , t ∈ [0,Ts),

x̃k(t) = x̃k(iTs) +

∫ t

iTs

(
−λsInx̃k−1(ν) + λs

(
1− eλsTs

)−1
x̃k−1 (iTs)

)
dν −

∫ t

iTs

Σν , t ∈ [iTs, (i+ 1)Ts).

The two expressions above represent the Picard iterates of the following respective differential equations:

dx̃k−1(t) = [−λsInx̃k−1(t)− ΛN,µ (t, xk−1(t))] dt

− FN,σ (t, xk−1(t)) dWt, x̃k−1(0) = −x0, t ∈ [0,Ts),

dx̃k−1(t) =
[
−λsInx̃k−1(t) + λs

(
1− eλsTs

)−1
x̃k−1 (iTs)− ΛN,µ (t, xk−1(t))

]
dt

− FN,σ (t, xk−1(t)) dWt, t ∈ [iTs, (i+ 1)Ts),

for (k, t) ∈ N× [0, T ] and i ∈
{
1, . . . ,

⌊
t/Ts

⌋}
, where we have used the definition of Σt is defined in (D.9). The equa-

tions above are linear in x̃k−1, while the exogenous drift and diffusion inputs ΛN,µ (t, xk−1(t)) and FN,σ (t, xk−1(t))
are continuous and uniformly bounded over [0, T ] due to the truncation and the assumed regularity. Thus, we in-
voke [100, Thm. 2.3.1] to establish the well-posedness of the equations above (in the variable x̃k−1). Furthermore, the
linearity in x̃k−1 implies that we may write (see e.g. [95, Sec. 5.4.2])

x̃k−1(t) = −e−λstx0 −
∫ t

0

e−λs(t−ν)Σν , t ∈ [0,Ts), (D.14a)
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x̃k−1(t) = e−λs(t−iTs)x̃k−1(iTs) + λs
(
1− eλsTs

)−1
x̃k−1 (iTs)

∫ t

iTs

e−λs(t−ν)dν

−
∫ t

iTs

e−λs(t−ν)Σν , t ∈ [iTs, (i+ 1)Ts),

(D.14b)

for (k, t) ∈ N × [0, T ] and i ∈
{
1, . . . ,

⌊
t/Ts

⌋}
, where we have substituted back the definition of Σt is defined

in (D.9). Simplifying the expression above by solving the second integral in the last equation yields

x̃k−1(t) = −e−λstx0 −
∫ t

0

e−λs(t−ν)Σν , t ∈ [0,Ts),

x̃k−1(t) = e−λs(t−iTs)x̃k−1(iTs) +
(
1− eλsTs

)−1
(
1− e−λs(t−iTs)

)
x̃k−1 (iTs)

−
∫ t

iTs

e−λs(t−ν)Σν , t ∈ [iTs, (i+ 1)Ts),

for (k, t) ∈ N× [0, T ] and i ∈
{
1, . . . ,

⌊
t/Ts

⌋}
. Hence, we conclude that

x̃k−1(Ts) = −e−λsTsx0 −
∫ Ts

0

e−λs(Ts−ν)Σν , (D.16a)

x̃k−1(iTs) = −
∫ iTs

(i−1)Ts

e−λs(iTs−ν)Σν , i ∈
{
2, . . . ,

⌊
t/Ts

⌋}
, (k, t) ∈ N× [0, T ]. (D.16b)

The next two results help us with the computation of dV (ZN,t) in the proof of Lemma 3.2.
Proposition D.1 Let ZN,t be the strong solution of (47), and let τ(t) be the stopping time defined in (49), Lemma 3.2.
Then,∫ τ(t)

0

e2λν
(
∇V (ZN,ν)

⊤
Jµ (ν, ZN,ν) +

1

2
Tr
[
Kσ (ν, ZN,ν)∇2V (ZN,ν)

])
dν

≤ −2λ

∫ τ(t)

0

e2λνV (ZN,ν) dν +

∫ τ(t)

0

e2λν Ũ (ν, ZN,ν) dν +

∫ τ(t)

0

e2λνϕU (ν, ZN,ν) dν

+

∫ τ(t)

0

e2λν
(
ϕµ (ν, ZN,ν) + ϕµ∥ (ν, ZN,ν)

)
dν, (D.17a)∫ τ(t)

0

e2λν∇V (ZN,ν)
⊤
Jσ (ν, ZN,ν) dWν =

∫ τ(t)

0

e2λν (ϕσ (ν, ZN,ν) + ϕσ∥ (ν, ZN,ν)) dWν , (D.17b)

for all t ∈ R≥0, where Kσ (ν, ZN,ν) = Jσ (ν, ZN,ν) Jσ (ν, ZN,ν)
⊤, and where Jµ (ν, ZN,ν) and Jσ (ν, ZN,ν) are

defined in (45), and the functions Ũ , ϕrµ, and ϕrσ are defined in (52) in the statement of Lemma 3.2. Additionally, we
have defined

ϕµ∥ (ν, ZN,ν) = ∇V (ZN,ν)
⊤
(I2 ⊗ g(ν))

(
Λ
∥
µ ⊙ ZN

)
(ν),

ϕσ∥ (ν, ZN,ν) = ∇V (Zν)
⊤
(I2 ⊗ g(ν))

(
F

∥
σ ⊙ ZN

)
(ν),

ϕU (ν, ZN,ν) = ∇V (ZN,ν)
⊤
(I2 ⊗ g(ν)) (Fr ⊙ ZN ) (ν).

Proof. Using the definitions of Jµ in (45), we have that

∇V (ZN,ν)
⊤
Jµ (ν, ZN,ν) = V· (ZN,ν)

⊤
F̄µ (ν,XN,ν) + Vr (ZN,ν)

⊤
F̄µ

(
ν,Xr

N,ν

)
+ V· (ZN,ν)

⊤
(g(ν)UL1,ν + Λµ (ν,XN,ν))

+ Vr (ZN,ν)
⊤ (
g(ν)Ur

ν + Λµ

(
ν,Xr

N,ν

))
, ν ∈ [0, τ(t)],

which, upon using (9), Assumption 2 can be re-written as
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∇V (ZN,ν)
⊤
Jµ (ν, ZN,ν) ≤ −2λV (ZN,ν) + V· (ZN,ν)

⊤
(g(ν)UL1,ν + Λµ (ν,XN,ν))

+ Vr (ZN,ν)
⊤ (
g(ν)Ur

ν + Λµ

(
ν,Xr

N,ν

))
, ν ∈ [0, τ(t)].

Adding and subtracting Fr (XN ) then leads to

∇V (ZN,ν)
⊤
Jµ (ν, ZN,ν)

≤ −2λV (ZN,ν) + V· (ZN,ν)
⊤
g(ν) (FL1

−Fr) (XN ) (ν)

+ V· (ZN,ν)
⊤
(g(ν)Fr (XN ) (ν) + Λµ (ν,XN,ν)) + Vr (ZN,ν)

⊤ (
g(ν)Ur

ν + Λµ

(
ν,Xr

N,ν

))
, (D.18)

for ν ∈ [0, τ(t)], where we have used the definition that UL1

.
= FL1

(XN ). We develop the expression further by
using (11) in Assumption 4 to conclude that

Λµ (ν, ·) =
[
g(ν) g(ν)⊥

] [Λ∥
µ (ν, ·)

Λ⊥
µ (ν, ·)

]
= g(ν)Λ

∥
µ (ν, ·) + g(ν)⊥Λ⊥

µ (ν, ·) .

Substituting into (D.18) yields

∇V (ZN,ν)
⊤
Jµ (ν, ZN,ν)

≤ −2λV (ZN,ν) + V· (ZN,ν)
⊤
g(ν) (FL1

−Fr) (XN ) (ν) +∇V (ZN,ν)
⊤ (

I2 ⊗ g(ν)⊥
)(

Λ⊥
µ ⊙

[
XN

Xr
N

])
(ν)

+∇V (ZN,ν)
⊤
(I2 ⊗ g(ν))

((
Fr + Λ

∥
µ

)
⊙
[
XN

Xr
N

])
(ν), ν ∈ [0, τ(t)],

where we have used the definition that Ur .
= Fr (X

r
N ). The expression in (D.17a) then follows from the last inequality

in the straightforward manner.

Next, using the definition of Jσ in (45), we have that∫ τ(t)

0

e2λν∇V (ZN,ν)
⊤
Jσ (ν, ZN,ν) dWν =

∫ τ(t)

0

e2λν∇V (Zν)
⊤
(
Fσ ⊙

[
XN

Xr
N

])
(ν)dWν

=

∫ τ(t)

0

e2λν∇V (Zν)
⊤
(
(p+ Λσ)⊙

[
XN

Xr
N

])
(ν)dWν , t ∈ R≥0,

where we have used the definition of Fσ in (2). Since (11) and (12) in Assumptions 4 and 5, respectively, along with
Definition 4 imply that

p (ν, ·) + Λσ (ν, ·) =g(ν)⊥p⊥ (ν, ·) + g(ν)⊥Λ⊥
σ (ν, ·) + g(ν)p

∥
(ν, ·) + g(ν)Λ

∥
σ (ν, ·)

=g(ν)⊥F⊥
σ (ν, ·) + g(ν)F

∥
σ (ν, ·) ,

the previous integral equality can be re-written as∫ τ(t)

0

e2λν∇V (ZN,ν)
⊤
Jσ (ν, ZN,ν) dWν

=

∫ τ(t)

0

e2λν∇V (Zν)
⊤ (

I2 ⊗ g(ν)⊥
)(

F⊥
σ ⊙

[
XN

Xr
N

])
(ν)dWν

+

∫ τ(t)

0

e2λν∇V (Zν)
⊤
(I2 ⊗ g(ν))

(
F

∥
σ ⊙

[
XN

Xr
N

])
(ν)dWν ,

for t ∈ R≥0, thus establishing the expression in (D.17b).

In the subsequent proposition, we derive the effect of reference feedback operator Fr on the truncated joint process
ZN,t.
Proposition D.2 Let ZN,t be the strong solution of (47), and let τ(t) be the stopping time defined in (49), Lemma 3.2.
Then, for the term ϕU defined in the statement of Proposition D.1, we have that∫ τ(t)

0

e2λνϕU (ν, ZN,ν) dν =

∫ τ(t)

0

(
Ûµ (τ(t), ν, ZN ;ω) dν + Ûσ (τ(t), ν, ZN ;ω) dWν

)
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+

∫ τ(t)

0

e2λν
(
ϕUµ (ν, ZN,ν ;ω) dν + ϕUσ (ν, ZN,ν ;ω) dWν

)
, t ∈ R≥0, (D.19)

where

Ûµ (τ(t), ν, ZN ;ω) = e−ωτ(t) ω

2λ− ω

(
eωτ(t)P (τ(t), ν)− e2λτ(t)∇V

(
ZN,τ(t)

)⊤
(I2 ⊗ g(τ(t)))

)
× eων

(
Λ
∥
µ ⊙ ZN

)
(ν),

Ûσ (τ(t), ν, ZN ;ω) = e−ωτ(t) ω

2λ− ω

(
eωτ(t)P (τ(t), ν)− e2λτ(t)∇V

(
ZN,τ(t)

)⊤
(I2 ⊗ g(τ(t)))

)
× eων

(
F

∥
σ ⊙ ZN

)
(ν),

ϕUµ
(ν, ZN,ν ;ω) =

ω

2λ− ω
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
Λ
∥
µ ⊙ ZN

)
(ν),

ϕUσ
(ν, ZN,ν ;ω) =

ω

2λ− ω
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
F

∥
σ ⊙ ZN

)
(ν),

and where P (τ(t), ν) is defined in (54), Lemma 3.2.

Proof. Using the definition of ϕU in the statement of Proposition D.1, we have that∫ τ(t)

0

e2λνϕU (ν, ZN,ν) dν

=

∫ τ(t)

0

e2λν∇V (ZN,ν)
⊤
(I2 ⊗ g(ν)) (Fr ⊙ ZN ) (ν)dν

=

∫ τ(t)

0

e2λν∇V (ZN,ν)
⊤
(I2 ⊗ g(ν))

(
Fω ⊙

(
Λ
∥
µ ⊙ ZN

)
(ν) + FN ,ω ⊙

(
F

∥
σ ⊙ ZN ,W

)
(ν)

)
dν,

for all t ≥ 0, where we have used the definition of Fr in (23). Next, using the definitions of Fω and FN ,ω (·,W)
in (18a) and (23), respectively, we can re-write the previous expression as∫ τ(t)

0

e2λνϕU (ν, ZN,ν) dν =

∫ τ(t)

0

∫ ν

0

(
−ωe(2λ−ω)ν

)
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
eωβ

(
Λ
∥
µ ⊙ ZN

)
(β)dβ

)
dν

+

∫ τ(t)

0

∫ ν

0

(
−ωe(2λ−ω)ν

)
∇V (ZN,ν)

⊤
(I2 ⊗ g(ν))

(
eωβ

(
F

∥
σ ⊙ ZN

)
(β)dWβ

)
dν,

for all t ∈ R≥0. Changing the order of integration in the first integral on the right hand side, and applying Lemma B.1
to the second integral:∫ τ(t)

0

e2λνϕU (ν, ZN,ν) dν

=

∫ τ(t)

0

(
−
∫ τ(t)

ν

ωe(2λ−ω)β∇V (ZN,β)
⊤
(I2 ⊗ g(β)) dβ

)
eων

(
Λ
∥
µ ⊙ ZN

)
(ν)dν

+

∫ τ(t)

0

(
−
∫ τ(t)

ν

ωe(2λ−ω)β∇V (ZN,β)
⊤
(I2 ⊗ g(β)) dβ

)
eων

(
F

∥
σ ⊙ ZN

)
(ν)dWν , (D.20)

for all t ∈ R≥0, where in the first integral, we switch between the variables β and ν after changing the order of
integration. We then complete the proof by using an identical line of reasoning in the proof of Proposition C.2
from (C.12) onwards.

Similar to Proposition C.3, we derive an alternative representation for the term P (τ(t), ν) next.
Proposition D.3 Recall the expression for P (τ(t), ν) in (54) in the statement of Lemma 3.2 which we restate below:

P (τ(t), ν) =

∫ τ(t)

ν

e(2λ−ω)βdβ

[
∇V (ZN,β)

⊤
(I2 ⊗ g(β))

]
dβ ∈ R1×2m, 0 ≤ ν ≤ τ(t), (D.21)
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where the τ(t) is defined in (49). Then, P (τ(t), ν) admits the following representation:

P (τ(t), ν) = P◦ (τ(t), ν) + Pad (τ(t), ν) + P̃ (τ(t), ν) ∈ R1×2m, 0 ≤ ν ≤ τ(t), t ∈ R≥0, (D.22)

where

P◦ (τ(t), ν) =

3∑
i=1

∫ τ(t)

ν

e(2λ−ω)βPµi
(β)⊤dβ +

∫ τ(t)

ν

e(2λ−ω)β (Pσ(β)dWβ)
⊤
, (D.23a)

Pad (τ(t), ν) =

∫ τ(t)

ν

e(2λ−ω)βPU (β)
⊤dβ, (D.23b)

P̃ (τ(t), ν) =

∫ τ(t)

ν

e(2λ−ω)βP̃U (β)
⊤dβ, (D.23c)

and where PU (β), P̃U (β) ∈ R2m are defined as

PU (β) = (I2 ⊗ g(β))
⊤ ∇2V (ZN,β) (I2 ⊗ g(β)) (Fr ⊙ ZN ) (β),

P̃U (β) = (I2 ⊗ g(β))
⊤ ∇2V (ZN,β)

[
g(β) (FL1

−Fr) (XN )(β)
0n

]
,

the terms Pµ1
(β) ∈ R2m, i ∈ {1, 2, 3} are defined as

Pµ1(β) = (I2 ⊗ ġ(β))
⊤ ∇V (ZN,β) ,

Pµ2
(β) = (I2 ⊗ g(β))

⊤ ∇2V (ZN,β)
([
F̄µ + Λµ

]
⊙ ZN

)
(β),

Pµ3(β) =
1

2
(I2 ⊗ g(β))

⊤ T⃗r
[
Kσ (β, ZN,β)∇2Vi (ZN,β)

]2n
i=1

,

and Pσ(β) ∈ R2m×d is defined as

Pσ(β) = (I2 ⊗ g(β))
⊤ ∇2V (ZN,β) Jσ (β, ZN,β) .

Additionally, we have defined Kσ (β, ZN,β)
.
= Jσ (β, ZN,β) Jσ (β, ZN,β)

⊤ ∈ S2n and

T⃗r
[
Kσ (β, ZN,β)∇2Vi (ZN,β)

]2n
i=1

.
= [K1 (β, ZN,β) · · · K2n (β, ZN,β)]

⊤ ∈ R2n,

Ki (β, ZN,β) = Tr
[
Kσ (β, ZN,β)∇2Vi (ZN,β)

]
∈ R.

Proof. We closely follow the proof of Proposition C.3 and begin by defininig

ĝ(·) .= I2 ⊗ g(·) =
[
g(·) 0n,m
0n,m g(·)

]
∈ R2n×2m. (D.24)

Then, we write ∇V (ZN,β)
⊤
(I2 ⊗ g(β)) as

∇V (ZN,β)
⊤
(I2 ⊗ g(β)) =∇V (ZN,β)

⊤
ĝ(β)

=
[
∇V (ZN,β)

⊤
ĝ·,1(β) · · · ∇V (ZN,β)

⊤
ĝ·,2m(β)

]
=
[∑2n

i=1 Vi (ZN,β)
⊤
ĝi,1(β) · · ·

∑2n
i=1 Vi (ZN,β)

⊤
ĝi,2m(β)

]
∈ R1×2m, (D.25)

where ĝ·j(β) ∈ R2n is the j-th column of ĝ(β), j ∈ {1, . . . , 2m}, and

Vi (ZN,β)
.
= ∂V (ZN,β) /∂ [ZN,β ]i ∈ R, i ∈ {1, . . . , 2n} .

Applying Itô’s lemma to Vi (ZN,β) ĝi,j(β) ∈ R, (i, j) ∈ {1, . . . , 2n}×{1, . . . , 2m}, and using the truncated dynamics
in (47) we get

dβ [Vi (ZN,β) ĝi,j(β)]

=

[
Vi (ZN,β) ˙̂gi,j(β) +

(
∇Vi (ZN,β)

⊤
Jµ (β, ZN,β) +

1

2
Tr
[
Kσ (β, ZN,β)∇2Vi (ZN,β)

])
ĝi,j(β)

]
dβ

+∇Vi (ZN,β)
⊤
Jσ (β, ZN,β) ĝi,j(β)dWβ , (D.26)
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where we have replaced JN,µ and KN,σ = JN,σJ
⊤
N,σ ∈ S2n with Jµ and Kσ because from Proposition 3.2, ZN,β is

also a strong solution of the joint process (45) for all β ∈ [ν, τ(t)] ⊆ [0, τ⋆] ⊆ [0, τN ]. See (49) for the definition of
the stopping times τ⋆ and τN . Since (D.25) implies that

dβ

[
∇V (ZN,β)

⊤
ĝ·,j(β)

]
=

2n∑
i=1

dβ

[
Vi (ZN,β)

⊤
ĝi,j(β)

]
∈ R, j ∈ {1, . . . , 2m} ,

we may substitute the expression in (D.26) to obtain

dβ

[
∇V (ZN,β)

⊤
ĝ·,j(β)

]
= ∇V (ZN,β)

⊤ ˙̂g·,j(β)dβ +

(
∇2V (ZN,β) Jµ (β, ZN,β) +

1

2
T⃗r
[
Kσ (β, ZN,β)∇2Vi (ZN,β)

]2n
i=1

)⊤

ĝ·,j(β)dβ

+ ĝ·,j(β)
⊤∇2V (ZN,β) Jσ (β, ZN,β) dWβ ∈ R,

for j ∈ {1, . . . , 2m}. Once again from (D.25) we have that

∇V (ZN,β)
⊤
(I2 ⊗ g(β)) =

[
∇V (ZN,β)

⊤
ĝ·,1(β) · · · ∇V (ZN,β)

⊤
ĝ·,2m(β)

]
.

It then follows from the previous expression that

dβ

[
∇V (ZN,β)

⊤
(I2 ⊗ g(β))

]
= ∇V (ZN,β)

⊤ ˙̂g(β)dβ +

(
∇2V (ZN,β) Jµ (β, ZN,β) +

1

2
T⃗r
[
Kσ (β, ZN,β)∇2Vi (ZN,β)

]2n
i=1

)⊤

ĝ(β)dβ

+
(
ĝ(β)⊤∇2V (ZN,β) Jσ (β, ZN,β) dWβ

)⊤
∈ R1×2m. (D.27)

Next, it follows from the defintion of Jµ in (45) that

Jµ (β, ZN,β) =

[
Fµ (β,XN,β , UL1,β)

Fµ

(
β,Xr

N,β , U
r
β

) ]
=

[
F̄µ (β,XN,β) + g(β)UL1,β + Λµ (β,XN,β)

Fµ

(
β,Xr

N,β , U
r
β

) ]
∈ R2n,

where we have used the decomposition (4) in Definition 1. It then follows from the definitions UL1

.
= FL1

(XN ) and
Ur .

= Fr (X
r
N ) that

Jµ (β, ZN,β) =

[
F̄µ (β,XN,β) + g(β)FL1 (XN ) (β) + Λµ (β,XN,β)

Fµ

(
β,Xr

N,β ,Fr (X
r
N ) (β)

) ]
∈ R2n,

which, upon adding and subtracting Fr (XN ) yields

Jµ (β, ZN,β) =

[
F̄µ (β,XN,β) + g(β) (FL1 −Fr) (XN )(β) + g(β)Fr (XN ) (β) + Λµ (β,XN,β)

Fµ

(
β,Xr

N,β ,Fr (X
r
N ) (β)

) ]

=

[
Fµ (β,XN,β ,Fr (XN ) (β))

Fµ

(
β,Xr

N,β ,Fr (X
r
N ) (β)

)]
+

[
g(β) (FL1 −Fr) (XN )(β)

0n

]
∈ R2n.

Appealing to the decomposition (4) in Definition 1 once again leads to

Jµ (β, ZN,β) =
([
F̄µ + Λµ

]
⊙ ZN

)
(β) + ĝ(β) (Fr ⊙ ZN ) (β) +

[
g(β) (FL1

−Fr) (XN )(β)
0n

]
∈ R2n. (D.28)

Similarly, the defintion of Jσ in (45) implies that

Jσ (β, ZN,β)
.
=

[
Fσ (β,XN,β)

Fσ

(
β,Xr

N,β

)]
=
([
F̄σ + Λσ

]
⊙ ZN

)
(β) ∈ R2n×d, (D.29)

where we have once more used the decomposition (4) in Definition 1. Substituting (D.28) and (D.29) into (D.27)
produces

dβ

[
∇V (ZN,β)

⊤
(I2 ⊗ g(β))

]
=

[
3∑

i=1

Pµ1
(β) + PU (β) + P̃U (β)

]⊤
dβ + (Pσ(β)dWβ)

⊤ ∈ R1×2m.

Then, (D.22) is established by substituting the above into (D.21).
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The next result establishes the bounds for the pertinent entities in the last proposition.
Proposition D.4 Consider the functions Pµi

(t) ∈ R2m, i ∈ {1, 2, 3}, and Pσ(t) ∈ R2m×d defined in the statement of
Proposition D.3. If the stopping time τ⋆, defined in (49), Lemma 3.2, satisfies τ⋆ = t⋆, then

3∑
i=1

∥∥∥(Pµi

)
t⋆

∥∥∥π0
⋆

2p
≤

√
n∆g

(
∆∂V ∆Pµ

+
1√
2
∆∂2V ∆Pσ

(4p, 2p)

)
+
√
2∆ġ

∥∥∥(∇V (ZN )
)
t⋆

∥∥∥π0
⋆

2p
, (D.30a)

∥∥∥(Pσ

)
t⋆

∥∥∥π0
⋆

q
≤

√
n∆g∆∂V ∆Pσ (q, q), q ∈ {2p, 4p} , (D.30b)

where

∆Pµ =
∥∥∥(F̄µ (·, XN )

)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(F̄µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(Λµ (·, XN )

)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(Λµ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
,

∆Pσ
(r, s) = Eπ0

⋆

[(
F̄σ (·, XN )

)r
t⋆

] 1
s

+ Eπ0
⋆

[(
F̄σ (·, Xr

N )
)r
t⋆

] 1
s

+ Eπ0
⋆

[(
Λσ (·, XN )

)r
t⋆

] 1
s

+ Eπ0
⋆

[(
Λσ (·, Xr

N )
)r
t⋆

] 1
s

,

for (r, s) ∈ {2p, 4p} × {2p, 4p}.

Proof. we closely follow the proof of Proposition C.4. We begin with the term Pµ1 defined in (D.23a), which we may
bound as follows:

∥Pµ1(t)∥ ≤ ∥I2 ⊗ ġ(t)∥F ∥∇V (ZN,t)∥ ≤
√
2∆ġ ∥∇V (ZN,t)∥ , ∀t ∈ [0, T ],

where we have used the bound on ġ(t) in Assumption 1. It then follows that(
Pµ1

)
t⋆

≤
√
2∆ġ

(
∇V (ZN )

)
t⋆
,

and thus ∥∥∥(Pµ1

)
t⋆

∥∥∥π0
⋆

2p
≤

√
2∆ġ

∥∥∥(∇V (ZN )
)
t⋆

∥∥∥π0
⋆

2p
. (D.31)

Similarly, using the bound on g(t) in Assumption 1 and using the bound in (E.1b), Proposition E.1, we obtain

∥Pµ2
(t)∥ ≤ ∥I2 ⊗ g(t)∥F

∥∥∇2V (ZN,t)
∥∥∥∥([F̄µ + Λµ

]
⊙ ZN

)
(t)
∥∥

≤
√
n∆g∆∂V

∥∥∥∥[ F̄µ (t,XN,t) + Λµ (t,XN,t)
F̄µ

(
t,Xr

N,t

)
+ Λµ

(
t,Xr

N,t

)]∥∥∥∥ ,
and thus

∥Pµ2
(t)∥ ≤

√
n∆g∆∂V

(∥∥F̄µ (t,XN,t)
∥∥+ ∥Λµ (t,XN,t)∥+

∥∥F̄µ

(
t,Xr

N,t

)∥∥+ ∥∥Λµ

(
t,Xr

N,t

)∥∥) , ∀t ∈ [0, T ].

Therefore, we can conclude that(
Pµ2

)
t⋆

≤
√
n∆g∆∂V

((
F̄µ (t,XN,t)

)
t⋆
+
(
Λµ (t,XN,t)

)
t⋆
+
(
F̄µ

(
t,Xr

N,t

))
t⋆
+
(
Λµ

(
t,Xr

N,t

))
t⋆

)
(D.32)

It then follows due to the Minkowski’s inequality that∥∥∥(Pµ2

)
t⋆

∥∥∥π0
⋆

2p
≤

√
n∆g∆∂V

(∥∥∥(F̄µ (·, XN )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(F̄µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p

)
+
√
n∆g∆∂V

(∥∥∥(Λµ (·, XN )
)
t⋆

∥∥∥π0
⋆

2p
+
∥∥∥(Λµ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p

)
. (D.33)

Next, consider the term Pµ3
defined in (D.23a), using which we obtain the following bound:

∥Pµ3
(t)∥ ≤ 1√

2
∆g

∥∥∥T⃗r
[
Kσ (t, ZN,t)∇2Vi (ZN,t)

]2n
i=1

∥∥∥ =
1√
2
∆g

(
2n∑
i=1

|Ki (t, ZN,t)|2
) 1

2

, (D.34)
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where

Ki (t, ZN,t) = Tr
[
Kσ (t, ZN,t)∇2Vi (ZN,t)

]
∈ R, Kσ (t, ZN,t)

.
= Jσ (t, ZN,t) Jσ (t, ZN,t)

⊤ ∈ S2n.

Following the reasoning that leads to (C.23) and using the definition of Jσ in (45), it can be shown that

|Ki (t, ZN,t)| ≤
∥∥∇2Vi (ZN,t)

∥∥
F

(
∥Fσ (t,XN,t)∥2F +

∥∥Fσ

(
t,Xr

N,t

)∥∥2
F

)
,

for all (t, i) ∈ [0, T ]× {1, . . . , 2n}. Substituting the above bound into (D.34) then leads to

∥Pµ3
(t)∥ ≤ 1√

2
∆g

(
2n∑
i=1

∥∥∇2Vi (ZN,t)
∥∥2
F

) 1
2 (

∥Fσ (t,XN,t)∥2F +
∥∥Fσ

(
t,Xr

N,t

)∥∥2
F

)
≤ 1√

2
∆g

(
2n∑
i=1

∥∥∇2Vi (ZN,t)
∥∥
F

)(
∥Fσ (t,XN,t)∥2F +

∥∥Fσ

(
t,Xr

N,t

)∥∥2
F

)
,

for all t ∈ [0, T ]. Substituting the bound in (E.1c), Proposition E.1 produces

∥Pµ3
(t)∥ ≤

√
n

2
∆g∆∂2V

(
∥Fσ (t,XN,t)∥2F +

∥∥Fσ

(
t,Xr

N,t

)∥∥2
F

)
, ∀t ∈ [0, T ].

Consequently, (
Pµ3

)
t⋆

≤
√
n

2
∆g∆∂2V

((
Fσ (·, XN )

)2
t⋆
+
(
Fσ (·, Xr

N )
)2
t⋆

)
.

By applying the Minkowski’s inequality, it follows that∥∥∥(Pµ3

)
t⋆

∥∥∥π0
⋆

2p
≤
√
n

2
∆g∆∂2V

(
Eπ0

⋆

[(
Fσ (·, XN )

)4p
t⋆

] 1
2p

+ Eπ0
⋆

[(
Fσ (·, Xr

N )
)4p
t⋆

] 1
2p

)
.

Then, using the decomposition Fσ = F̄σ + Λσ in (4) and the Minkowski’s inequality, we obtain∥∥∥(Pµ3

)
t⋆

∥∥∥π0
⋆

2p
≤
√
n

2
∆g∆∂2V

(
Eπ0

⋆

[(
F̄σ (·, XN )

)4p
t⋆

] 1
2p

+ Eπ0
⋆

[(
F̄σ (·, Xr

N )
)4p
t⋆

] 1
2p

)

+

√
n

2
∆g∆∂2V

(
Eπ0

⋆

[(
Λσ (·, XN )

)4p
t⋆

] 1
2p

+ Eπ0
⋆

[(
Λσ (·, Xr

N )
)4p
t⋆

] 1
2p

)
. (D.35)

Adding the bounds in (D.31), (D.33), and (D.35), establishes (D.30a).

Next, using the definition of Pσ , we obtain

∥Pσ(t)∥F ≤
√
n∆g∆∂V

(
∥Fσ (t,XN,t)∥F +

∥∥Fσ

(
t,Xr

N,t

)∥∥
F

)
,∀t ∈ [0, T ].

Thus, the decomposition Fσ = F̄σ + Λσ in (4) implies that

∥Pσ(t)∥F ≤
√
n∆g∆∂V

(∥∥F̄σ (t,XN,t)
∥∥
F
+
∥∥F̄σ

(
t,Xr

N,t

)∥∥
F
+

∥Λσ (t,XN,t)∥F +
∥∥Λσ

(
t,Xr

N,t

)∥∥
F

)
, ∀t ∈ [0, T ],

and hence,(
Pσ

)
t⋆

≤
√
n∆g∆∂V

((
F̄σ (·, XN )

)
t⋆
+
(
F̄σ (·, Xr

N )
)
t⋆
+
(
Λσ (·, XN )

)
t⋆
+
(
Λσ (·, Xr

N )
)
t⋆

)
. (D.36)

Applying the Minkowski’s inequality to (D.36 ) with q ∈ {2p, 4p}, we can conclude that∥∥∥(Pσ

)
t⋆

∥∥∥π0
⋆

q
≤

√
n∆g∆∂V

(∥∥∥(F̄σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

q
+
∥∥∥(F̄σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

q

)
+

√
n∆g∆∂V

(∥∥∥(Λσ (·, XN )
)
t⋆

∥∥∥π0
⋆

q
+
∥∥∥(Λσ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

q

)
,

for q ∈ {2p, 4p}, thus establishing (D.30b) and concluding the proof.
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E Supporting Results

The following result establishes a few consequences of Assumption 2 that we utilize throughout the manuscript.

Proposition E.1 The ILF V ∈ C3(Rn ×Rn;R), defined in Assumption 2, satisfies the following bounds:

{∥∇V (a, b)∥ , ∥∇aV (a, b)∥ , ∥∇bV (a, b)∥} ≤ ∥∇V (0, 0)∥+ 1√
2
∆∂V ∥a− b∥

≤ ∥∇V (0, 0)∥+ 1√
2α1

∆∂V V (a, b)
1
2 ,

(E.1a)

{∥∥∇2
aV (a, b)

∥∥
F
,
∥∥∇2

bV (a, b)
∥∥
F
,
∥∥∇2

a,bV (a, b)
∥∥
F

}
≤
√
n

2
∆∂V , (E.1b){

n∑
i=1

∥∥∇2
aVai

(a, b)
∥∥
F
,

n∑
i=1

∥∥∇2
bVbi(a, b)

∥∥
F
,

n∑
i=1

∥∥∇2
aVbi(a, b)

∥∥
F
,

n∑
i=1

∥∥∇2
bVai

(a, b)
∥∥
F

}
≤
√
n

2
∆∂2V , (E.1c)

for all a, b ∈ Rn.

Proof. Setting a′ = b′ = 0n in (10a), give us
n∑

i=1

(
|Vai

(a, b)− Vai
(0, 0)|2 + |Vbi(a, b)− Vbi(0, 0)|

2
)
≤ ∆2

∂V

∣∣∣∣[ab
]∣∣∣∣2

∆2n

=
1

2
∆2

∂V ∥a− b∥2 ,

where we have used [49, Lem. 2.3]. The above inequality can be re-written as

∥∇V (a, b)−∇V (0, 0)∥2 ≤ 1

2
∆2

∂V ∥a− b∥2 ⇒ ∥∇V (a, b)−∇V (0, 0)∥ ≤ 1√
2
∆∂V ∥a− b∥ ,

which, upon using the reverse triangle inequality yields

∥∇V (a, b)∥ − ∥∇V (0, 0)∥ ≤ ∥∇V (a, b)−∇V (0, 0)∥ ≤ 1√
2
∆∂V ∥a− b∥ .

Thus, this bound, along with the fact that {∥∇aV (a, b)∥ , ∥∇Vb(a, b)∥} ≤ ∥∇V (a, b)∥ establishes the penultimate
bound in (E.1a). The ultimate bound in (E.1a) is established by invoking (9) in Assumption 2.

Now, for any δ ∈ R, (10a) and [49, Lem. 2.3] imply
n∑

i=1

(Vai
(a+ δej , b)− Vai

(a, b))
2 ≤ 1

2
∆2

∂V δ
2 ⇒

n∑
i=1

(
Vai(a+ δej , b)− Vai(a, b)

δ

)2

≤ 1

2
∆2

∂V ,

where ej ∈ Rn is the jth canonical basis vector for Rn. Thus, we conclude

n∑
i=1

lim
δ→0

(
Vai(a+ δej , b)− Vai(a, b)

δ

)2

=

n∑
i=1

(
lim
δ→0

Vai(a+ δej , b)− Vai(a, b)

δ

)2

=

n∑
i=1

(
Vai,aj

(a, b)
)2

≤1

2
∆2

∂V ,

and thus ∥∥∇2
aV (a, b)

∥∥2
F
=

n∑
j=1

(
n∑

i=1

(
Vai,aj

(a, b)
)2) ≤ n

2
∆2

∂V .

The bounds for
∥∥∇2

bV (a, b)
∥∥2
F

and
∥∥∥∇2

a,bV (a, b)
∥∥∥2
F

are established similarly.

Finally, the identities in (E.1c) are established mutatis mutandis by using (10b).

Next, we compute the individual constituent parts for the terms ∆r
Ξi

and ∆r
Uj

, (i, j) ∈ {1, 2} × {1, 2, 3}, in Lem-
mas C.1 and C.2, respectively.
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Proposition E.2 Suppose there exists a strictly positive ϱ ∈ R>0 such that

Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥2p⋆] ≤ ϱ2p
⋆

, (E.2)

where the constant t⋆ is defined in (29) and p⋆ is defined in Assumption 3. Then, the following bound holds ∀N≥1 ∋
p ≤ p⋆: {∥∥∥(Vr (YN )

)
t⋆

∥∥∥π0
⋆

2p
,
∥∥∥(V⋆ (YN )

)
t⋆

∥∥∥π0
⋆

2p

}
≤ ∥∇V (0, 0)∥+ 1√

2
∆∂V ϱ. (E.3)

Furthermore, the drift vector field satisfies the following bounds ∀N≥1 ∋ p ≤ p⋆:

Eπ0
⋆

[(
Λ{·,∥,⊥}
µ (·, Xr

N )
)2p
t⋆

] 1
p

≤
(
∆{·,∥,⊥}

µ

)2 (
1 + 2∆2

⋆

)
+ 2

(
∆{·,∥,⊥}

µ

)2
ϱ2, (E.4a)∥∥∥(Λ{·,∥,⊥}

µ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

2p
≤ ∆{·,∥,⊥}

µ (1 + ∆⋆) + ∆{·,∥,⊥}
µ ϱ, (E.4b)∥∥∥(F̄µ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
≤ ∆f (1 + ∆⋆) + ∆fϱ,

∥∥∥(F̄µ (·, X⋆
N )
)
t⋆

∥∥∥π0
⋆

2p
≤ ∆f (1 + ∆⋆) . (E.4c)

Finally, the diffusion vector field satisfies the following bounds ∀N≥1 ∋ p ≤ p⋆:

Eπ0
⋆

[(
F {·,∥,⊥}
σ (·, Xr

N )
)2p
t⋆

] 1
p

≤
(
∆{·,∥,⊥}

p

)2
+
(
∆{·,∥,⊥}

σ

)2
(1 + ∆⋆) +

(
∆{·,∥,⊥}

σ

)2
ϱ, (E.5a){∥∥∥(F {·,∥,⊥}

σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

2p
,
∥∥∥(F {·,∥,⊥}

σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

4p

}
≤ ∆{·,∥,⊥}

p +∆{·,∥,⊥}
σ (1 + ∆⋆)

1
2

+∆{·,∥,⊥}
σ

√
ϱ, (E.5b){∥∥∥(Λ{·,∥,⊥}

σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

2p
,
∥∥∥(Λ{·,∥,⊥}

σ (·, Xr
N )
)
t⋆

∥∥∥π0
⋆

4p

}
≤ ∆{·,∥,⊥}

σ (1 + ∆⋆)
1
2 +∆{·,∥,⊥}

σ

√
ϱ, (E.5c)∥∥∥(Tr

[
Hσ (·, YN )∇2V (YN )

])
t⋆

∥∥∥π0
⋆

p
≤
√
n

2
∆∂V

(
2∆2

p +∆2
σ +∆2

σ∆⋆

)
+

√
n

2
∆∂V ∆

2
σϱ, (E.5d){∥∥∥(F̄σ (·, X⋆

N )
)
t⋆

∥∥∥π0
⋆

2p
,
∥∥∥(F̄σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

2p
,
∥∥∥(F̄σ (·, X⋆

N )
)
t⋆

∥∥∥π0
⋆

4p
,
∥∥∥(F̄σ (·, Xr

N )
)
t⋆

∥∥∥π0
⋆

4p

}
≤ ∆p. (E.5e)

Proof. Using (E.1a) in Proposition E.1 one sees that

{∥Vr (YN,t)∥ , ∥V⋆ (YN,t)∥} ≤ ∥∇V (0, 0)∥+ 1√
2
∆∂V

∥∥Xr
N,t −X⋆

N,t

∥∥ , ∀t ∈ [0, T ],

which implies {(
Vr (YN )

)
t⋆
,
(
V⋆ (YN )

)
t⋆

}
≤ ∥∇V (0, 0)∥+ 1√

2
∆∂V sup

t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥ .
Then (E.3) follows from (C.64).

Next, Assumption 4 implies that ∀t ∈ [0, T ],∥∥∥Λ{∥,⊥}
µ (t,Xr

N,t)
∥∥∥2 ≤

(
∆{∥,⊥}

µ

)2 (
1 +

∥∥Xr
N,t

∥∥2)
=
(
∆{∥,⊥}

µ

)2
+
(
∆{∥,⊥}

µ

)2 (∥∥X⋆
N,t

∥∥+ ∥∥Xr
N,t −X⋆

N,t

∥∥)2 ,
and thus (

Λ{∥,⊥}
µ (·, Xr

N )
)2
t⋆

≤
(
∆{∥,⊥}

µ

)2
+
(
∆{∥,⊥}

µ

)2(
sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥+ sup
t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥)2

.
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Hence, the pth-norm of the above inequality with respect to the measure π0
⋆ is as as follows:

Eπ0
⋆

[(
Λ{∥,⊥}
µ (·, Xr

N )
)2p
t⋆

] 1
p

≤
(
∆{∥,⊥}

µ

)2
+
(
∆{∥,⊥}

µ

)2
Eπ0

⋆

( sup
t∈[0,t⋆]

∥∥X⋆
N,t

∥∥+ sup
t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥)2p
 1

p

≤
(
∆{∥,⊥}

µ

)2
+
(
∆{∥,⊥}

µ

)2Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥2p] 1
2p

+ Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥2p] 1
2p

2

, (E.6)

where the last inequality is the consequence of the Minkowski’s inequality. Now, Proposition (3.1) establishes that
X⋆

N,t = X⋆
t , for all t ∈ [0, τN ], where X⋆

t is the unique strong solution of (5b). Then, since τ⋆ = t⋆ ≤ τN ,
Assumption (3) and Hölder’s inequality imply that

E

[
sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥2p] ≤ ∆2p
⋆ , ∀ N≥1 ∋ p ≤ p⋆. (E.7)

Substituting the bounds in (E.7) and (C.64) into (E.6) leads to

Eπ0
⋆

[(
Λ{∥,⊥}
µ (·, Xr

N )
)2p
t⋆

] 1
p

≤
(
∆{∥,⊥}

µ

)2
+
(
∆{∥,⊥}

µ

)2
(∆⋆ + ϱ)

2
. (E.8)

Then, we obtain (E.4a) by applying [110, Prop. 3.1.10-(iii)] to the right hand side of the above inequality. Further-
more, (E.4b) is obtained from (E.8) by using the subadditivity of the square root operator.

Using the definition F̄µ = f in (3) and the bound f in Assumptions 2.4, we use the same approach as above to
obtain (E.4c).

Next, Definition 4, followed by Assumptions 4 and 5, lead to the following:∥∥∥F {∥,⊥}
σ (t,Xr

N,t)
∥∥∥2
F
=
∥∥∥p{∥,⊥}(t,Xr

N,t)
∥∥∥2
F
+
∥∥∥Λ{∥,⊥}

σ (t,Xr
N,t)

∥∥∥2
F

≤
(
∆{∥,⊥}

p

)2
+
(
∆{∥,⊥}

σ

)2 (
1 +

∥∥Xr
N,t

∥∥2) 1
2

, ∀t ∈ [0, T ],

and thus, the subadditivity of the square root operator implies that(
F {∥,⊥}
σ (·, Xr

N )
)2
t⋆

≤
(
∆{∥,⊥}

p

)2
+
(
∆{∥,⊥}

σ

)2(
1 + sup

t∈[0,t⋆]

∥∥Xr
N,t

∥∥)

≤
(
∆{∥,⊥}

p

)2
+
(
∆{∥,⊥}

σ

)2(
1 + sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥+ sup
t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥) . (E.9)

Hence, taking the pth-norm of the above inequality with respect to the measure π0
⋆, and using the Minkowski’s in-

equality, we obtain

Eπ0
⋆

[(
F {∥,⊥}
σ (·, Xr

N )
)2p
t⋆

] 1
p

≤
(
∆{∥,⊥}

p

)2
+
(
∆{∥,⊥}

σ

)21 + Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥p] 1
p

+ Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥p] 1
p

 . (E.10)

Now, using Jensen’s inequality and the bounds in (C.64) and (E.7), we deduce that

Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥p] ≤ Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥2p] 1
2

≤ ∆p
⋆, (E.11a)

Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥p] ≤ Eπ0
⋆

[
sup

t∈[0,t⋆]

∥∥Xr
N,t −X⋆

N,t

∥∥2p] 1
2

≤ ϱp. (E.11b)
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Substituting these bounds into (E.10) yields (E.5a). Furthermore, the 2p-norm in (E.5b) is obtained by using the
subadditivity of the square root operator on (E.5a).

The 4p-norm in (E.5b) is obtained by taking the 2pth-norm of the inequality in (E.9) with respect to the measure π0
⋆,

and following identical steps as above.

Inequality (E.5c) is a direct consequence of (E.5b) and(??) and the decomposition Fσ = F̄σ + Λσ in (4).

Next, we see that by using an identical line of reasoning that produced (C.23) in the proof of Proposition C.4 and the
definition of Gσ in (25), we get that

Tr
[
Hσ (t, YN )∇2V (YN,t)

]
≤
∥∥∇2V (YN,t)

∥∥
F

(∥∥Fσ

(
t,Xr

N,t

)∥∥2
F
+
∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
, ∀t ∈ [0, T ],

which, upon using (E.1b) in Proposition E.1, yields

Tr
[
Hσ (t, YN )∇2V (YN,t)

]
≤
√
n

2
∆∂V

(∥∥Fσ

(
t,Xr

N,t

)∥∥2
F
+
∥∥F̄σ

(
t,X⋆

N,t

)∥∥2
F

)
, ∀t ∈ [0, T ].

It then follows from the decomposition Fσ = F̄σ + Λσ in (4) that

Tr
[
Hσ (t, YN )∇2V (YN,t)

]
≤
√
n

2
∆∂V

(∥∥p (t,Xr
N,t
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∥∥Λσ

(
t,Xr

N,t

)∥∥2
F

)
, ∀t ∈ [0, T ],

where we have used the definition F̄σ = p in (3). Using the bounds on p and Λσ in Assumptions 2.4 and 4, respectively,
we obtain

Tr
[
Hσ (t, YN )∇2V (YN,t)

]
≤
√
n

2
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2∆2
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σ
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∥∥) , ∀t ∈ [0, T ].

Hence, we conclude that(
Tr
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∥∥) .
Taking the pth-norm of the above inequality with respect to the measure π0

⋆, and using the Minkowski’s inequality, we
obtain∥∥∥(Tr

[
Hσ (·, YN )∇2V (YN )

])
t⋆
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⋆

p

≤
√
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2
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σEπ0

⋆

[
sup

t∈[0,t⋆]

∥∥X⋆
N,t

∥∥p] 1
p

+∆2
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[
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N,t

∥∥p] 1
p

 .

Then, substituting the bounds (E.11) into the above inequality leads to (E.5d).

Finally, using the definition F̄σ = p in (3) and the bound on p in Assumptions 2.4 yields (E.5e).
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